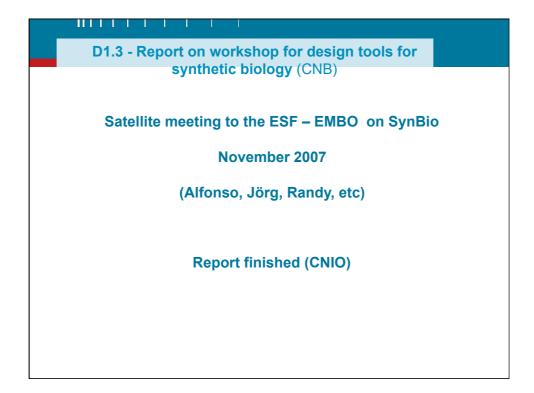
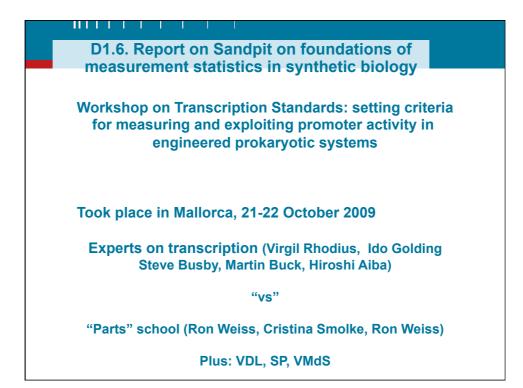


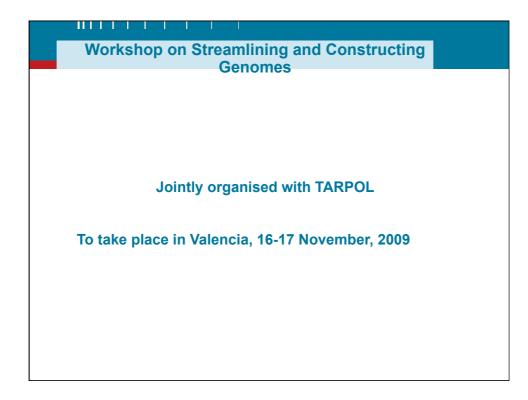
Milestones and expected results
M1.1. Recommendations for the European IT infrastructure for synthetic biology are discussed and recommendations issued (month 3)
M1.2. Recommendations for design tools on the IT infrastructure are discussed and recommendations issued (month 4)
M1.3 First experiences with the study group format are reviewed by the steering committee after 6 months and by advisory board and steering committee after 12 months and the format is adapted, if necessary (month 6, 12)
M1.4. Recommendations on standardization of biological parts are discussed (month 11)
M1.5. Recommendations on measurement systems in synthetic biology are discussed (month 24)
M1.6. Steering committee and advisory board decide whether the critical mass in Europe-Asian relations in synthetic biology has been reached and drafting a "common interests" document is going to be useful (month 24)

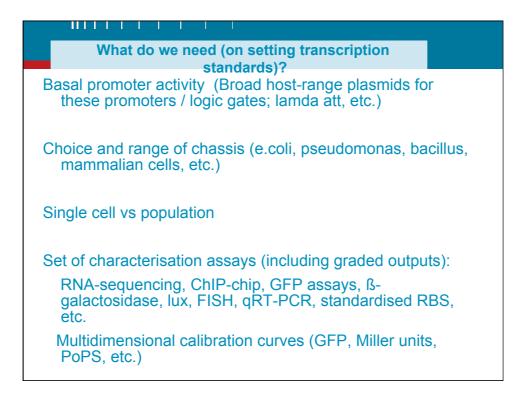

D1.1 - Material and rules for standardized meeting
structure
Web-based template document:
Definition of the theme and Scope
The need for the SynBio community and goals
Implementation plan (size, mode, participants
Timeline
Financing possibilities
Process:
Submission to Steering committee (WP-leaders, Coordinator)
Eg. IT: A. Valencia; Teaching: Sven P.; INdustry: L. Pasamontes

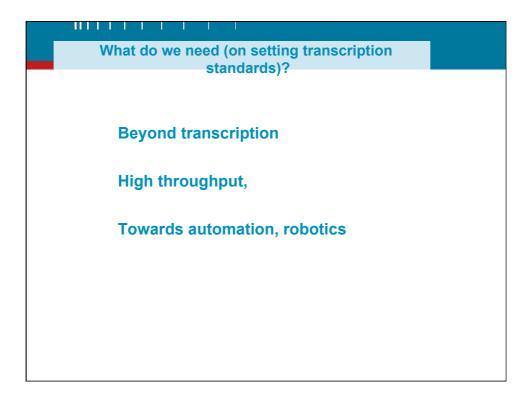
Tier	Theme	Number of	Length	Contribution	Deliverable	Estimated	Financial	WP
Tier	Theme	Participants	Length	to Emergence	Deliverable	Cost (€)	contribution requested (€)	VVF
WP means	the Work	2 - follow-up or package to wh omes / min	ich the pro	oposed meeting		t-indeper	ndent biolog	ical sy

D1.2 -Report on workshop on development of the European IT infrastructure for synthetic biology
Workshop Computational Infrastructure and Methods for Synthetic Biology
The 9th Annual BioPathways Meeting
VÍtor Martins dos Santos Vincent Schachter Vincent Danos Joanne Luciano Aviv Regev Eric Neumann
<i>July 19-20, 2008</i> Satellite Meeting ISMB 2008 Toronto, Canada


7:30 - 8:30		stration	
3:30-8:45	Vítor Martins dos Santos, Helmholtz Center for Infection Research, Braunschweig, DE	Opening remarks	
Session 1 &	Analysis : Databases & Software Tools		
Chair: Vítor M	fartins dos Santos		
3:45-09:30		Mapping pathways through integration of physical and genetic interactions	
9:30-10:15	Peter Karp, AI.SRI, Menlo Park, USA	The MetaCyc and BioCyc database collection	
10:15-10:45	Coffee Break		
		The role of biopathways in drug repositioning and determining side effects	
11:30-12:00 Geoffrey Winsor, Simon Fraser University, CA		InnateDB - Facilitating Systems Level Analyses of the Mammalian Innate Immune Response	
12:00-12:30	Immunity Research, University of British Columbia,	Cerebral 2.0: A Cytoscape plugin for the network-based visualization of datasets from multiple experimental conditions	
12:30-13:30	Lunch		
Session 2: N	letwork Reconstruction & Analysis		
Chair: Eric Ne	eumann, Teranode		
13:30-14:10	Rune Linding – Institute for Cancer Reseatrch, London, UK	Constructing in vivo phosphorylation networks	
14:10-14:50 Terry Gasterland, University California at San Diego, USA		Examining Cell Cycle Control Networks at Single Cell Resolution	
14:50-15:30	Kobi Benenson, Harvard University, Cambridge, USA	Molecular automata: from concepts to applications	
15.20 16:00	Coffee Break		
16:00-16:35		Functional redundancies - an evolutionarily conserved	
10.00-10.35	Nan Nain, naivaru weulda School, Boston, USA	control element in signal transduction and metabolism	
16:35-17:05	Tijana Milenković, Nataša Pržulj, University California Irvine, USA	From network structure to biological function in protein- protein interaction networks	
17:05-17:35	Jean Krivine, Harvard Medical School, Boston, USA	Rule-based modeling of large protein networks	
17:35-18:15	Peer Bork, EMBL, Heidleberg, DE	Get the most out of your metagenome: computational analysis of environmental sequence data	
General Disc	cussion	· · ·	
	Network analysis, Databases & Tools		


0	2 . Commutational Mathematics	na church und fain Ormith chia Diala mu
	3 : Computational Methods and Inf obi Benenson. Bauer Centre	rastructure for Synthetic Biology
	Vitor Martins dos Santos, Helmholtz	EMERGENCE: a Foundation for Synthetic
0.30-9.0	Center for Infection Research.	
-	Braunschweig, DE	Biology in Europe
	Randy Rettberg, MIT, Cambridge,	Synthetic Biology Based on Standard Parts:
	USA	Design Competitions and Catalogs
9:40-10:	Ildefonso Cases, CNIO, Madrid, ES	Bioinformatics tools to help in the design of
15		biological systems
10:15-10 :45	Coffee Break	
	Shoshana Wodak, Hospital Sick	Identifying meaningful pathways in metabolic
:25	Children, Toronto, CA	networks without the help of chemistry
	David Gilbert, University of Glasgow,	A behaviour driven approach to design and
:00	UK	implementation in Synthetic Biology
12:00-12	Martijn van Iersel, University of	WikiPathways, pathway creation and online
:30	Maastricht, NL	collaboration
12:30-13	Lunch	
:30		
	4: Evolution of pathways and netwo	orks
	panne Luciano, MITRE	
	Chris Sander, Sloan-Kettering, New	Svetema biology modeling
	York, USA	Systems biology modeling
	Edwin Wang, National Research	
:50	Council, McGill University, Montreal, CA	Principles of microRNA regulation of cellular networks
	Chris Myers, Cornell University, USA	
:30		Sloppiness in cellular networks
15:30-16 :00	Coffee Break	
15:30-16	Matthew de Jongh, Hope College,	Generation and Refinement of Metabolic
:05	Holland (MI), USA	Reaction Networks in the SEED
16:05-16	Andrey Ptitsyn, Colorado State	The Structure of Biological Pathways in Time
:35	University, Fort Collins, USA	
	Zhenjun Hu, Boston University, USA	Metagraph: a new graph structure for multiple-
:10	· · · · · · · · · · · · · · · · · · ·	scale visualization and modeling of biological
		networks/pathways
17:10-17	Pedro Beltrao, University California	Evolution of Cellular Networks
:45	San Francisco	
Round 1	Table Discussion	
47.45.40	Notice Description Definition	and Evolution






Genomes							
Time	16 November	17 November					
09:30	A. Moya – V. Martins dos Santos Introductory remarks						
	Session 1: Synthetic and Digital Biology Chair: V. Martins dos Santos	Session 3. Building Genomes Chair: P. Dennis (? To confirm)					
09:30	C. Venter (?)	H. Smith Making a synthetic cell: building the genome					
10:00	S. Rasmussen Assembly of a minimal protocell bottom up	C.A. Hutchison Making a synthetic cell: installing the genome					
10:30	S. Mansy Minimal cells from the bottom-up	I. Itaya Recombinant genomes produced via novel <i>Bacillus subtilis</i> genome vector					
11:00	Coffee break	Coffee break					
11:30	A. Danchin Toward a synthetic cell: information of the program and information of the machine	B. Wanner New resources and methods for <i>E. coli</i> functiona genomics					
12:00	N. Krasnogor Incremental model building with algorithmic systems biology	L. Serrano <i>M. pneumoniae</i> systems biology analysis					
13:00	Round table	Round table					
14:00	Lunch	Lunch					
	Consign 2. Streemlining Constraint	Session 4. Circuit Design and Evolution					

14:00	Lunch	Lunch
	Session 2. Streamlining Genomes Chair: V. de Lorenzo	Session 4. Circuit Design and Evolution Chair: L. Serrano
14:30	G. Posfai Engineering the evolvability of a streamlined genome	V. Martins dos Santos Streamlining and re-programming microbial catalysts
15:00	B. Papp Systems biology modelling of minimized genomes	F. de la Cruz Architecture and design of plasmid transcriptiona networks
15:30	T. Dandekar Streamlining genomes: several different roads and one goal	A. Moya Learning from natural minimal cells
16:00	Coffee break	Coffee break
16:30	P. Noirot Model-driven minimization of the Bacillus subtilis genome	T. Gabaldón Using comparative genomics to study the evolution of cellular metabolisms
17:00	R. Wagner Optimized biobricks for functional genomics and industrial applications	V. de Lorenzo Minimization of catabolic functions for biodegradation of aromatic pollutants
18:00	Round table	Round table

What do we need (on setting transcription	
standards)?	
Reference promoters / RBS	
(logic gates) characterised over	
range of conditions:	
Plac	
Тас	
Ara	
Lux	
Ps/Pr	
T7	
Ribosomal promoters	
Set of measurable parameters	
(strength, robustness, degree of	
orthogonality, etc.)	
orthogonality, etc./	

Further networking activities Asia (broadly)

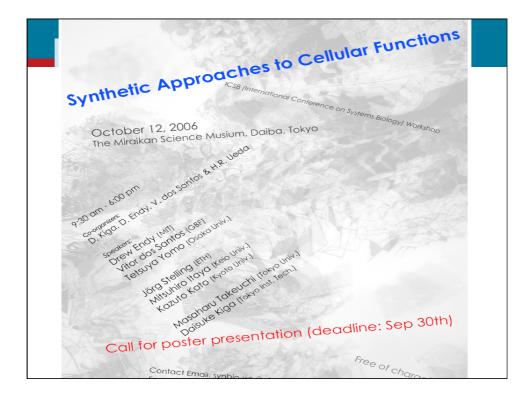
Sino-German Exploratory Workshop on Synthetic Biology, Hangzhou, China,

2009/2010. Couple to Probactys (EU) and perhaps other projects

To be organised jointly with Huanming Yang (Beijing Genome Institute, CN)

Exchange of students/ scientists:

China (2 students 7 month each plus 2 scientists 1 week in 2007)


India (2 Students 4 month each, plus scientist 1 week 2008)

Joint HGF-Russia exploratory wokshop Feb 2008

Explorative project in Israel on digital evolving microbial communities

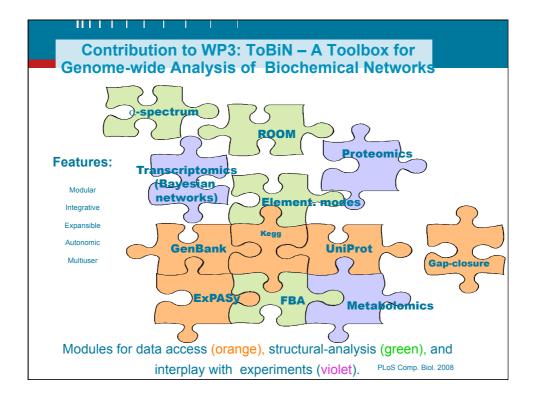
Indian - EU workshop on Synthetic Biology (Early 2010). Meeting brokered at CRG with Minister of Health and Sci Advisore SynBio in July 2008

ESF-JSPS Frontier Science Conference Series for Young Researchers (Synbio tentative for 2011)

Status Deliverables

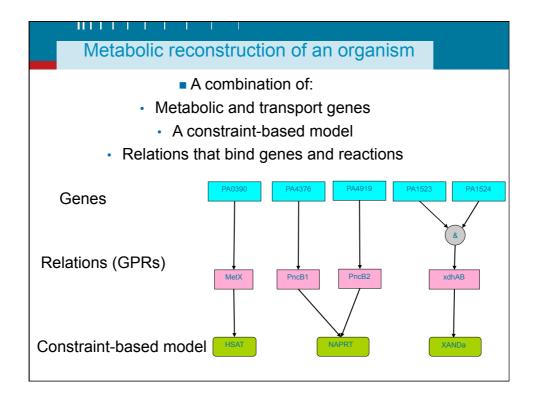
D1.1: Material and rules for standardized meeting structure in place for the first time (month 3) done

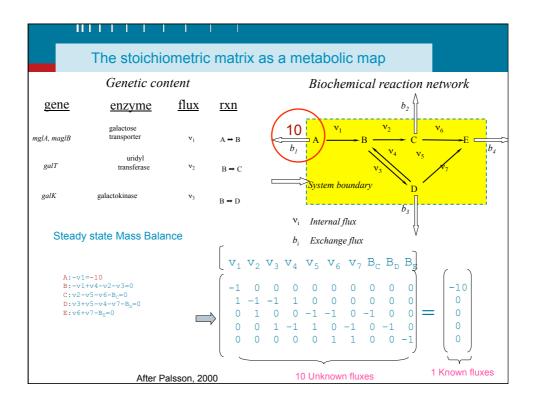
D1.2: Report on the first workshop on development of the European IT infrastructure for synthetic biology (month 9)

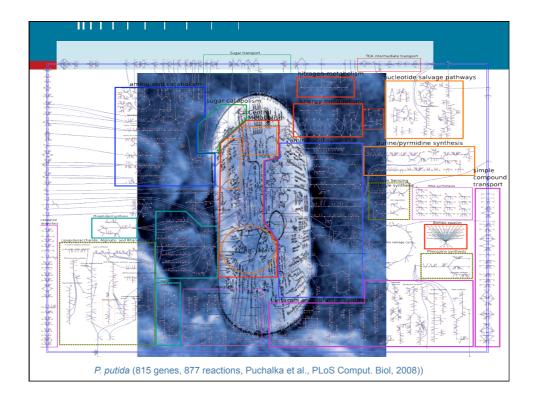

D1.3: Report on the first workshop for design tools for synthetic biology (month 12)

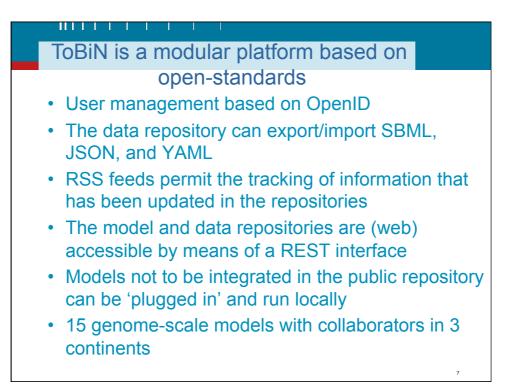
D1.4. Report on recommendations of the intra-consortium expert group on suitable promoter standardization formats (month 15)

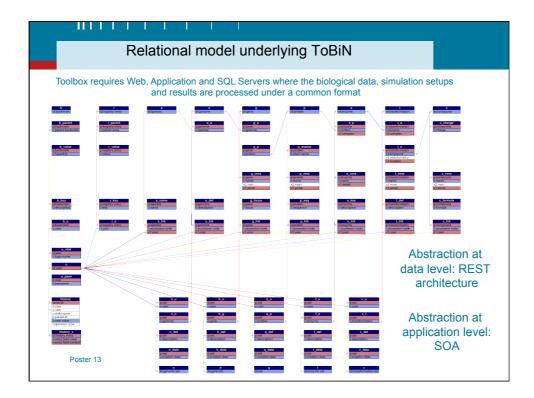
D1.5: Updated material for the appropriate section in the quarterly Synthetic Biology Newsletter regarding tasks 2, 3, and 4 (months 3, 6, 9, 12, etc)

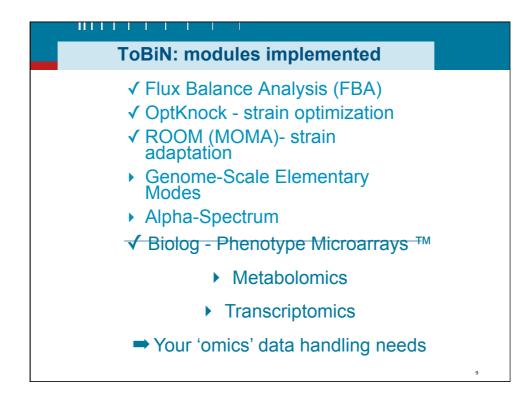

D1.6. Report on workshop on foundations of measurement statistics in synthetic biology (month 24) D1.7. Document identifying "common European-Asian interests and ways to develop them" or similar document in place and signin synthetic biology (month $32 \rightarrow 36$). Underway (VDL)

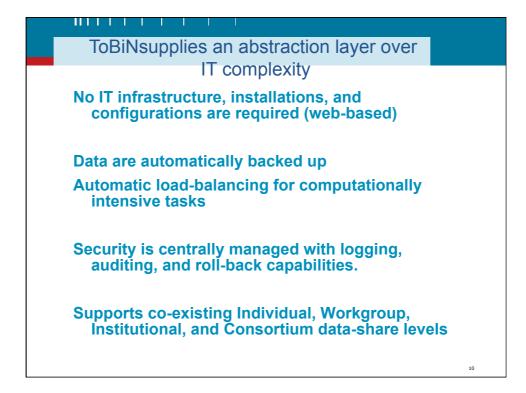

D 1.7 Document identifying "common European-Asian interest and ways to develop them" or similar document in place and signed by extra-European and European aroups/organizations involved in synthetic biology. Underway.

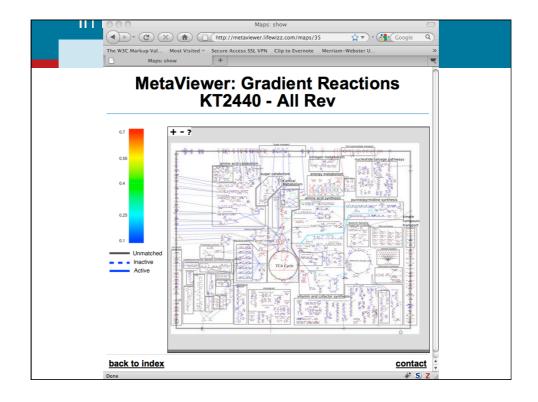


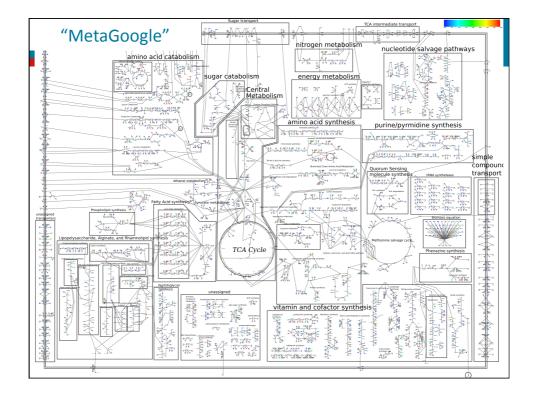

	stabolism (EMP, PPP, TCA cycle, Electron transport)
	3, aceE, aceF, ackA, acnA, acnB, acs, adhE, agp, appB, appC, atpA, atpB, atpC, atpD, atpE, atpF, atpG, atpH, atpI, cydA, cydB, cydC, cydD, cyoA, cyoB,), dld, eda, edd, eno, fba, fbp, fdhF, fdnG, fdnH, fdnI, fdoG, fdoH, fdoI, frdA, frdB, frdC, frdD, fumA, fumB, fumC, galM, gapA, gapC 1, gapC 2, glcB, glgA
	, wa, eu, eue cau control jou, jop, juni,
nuoA, nuo.	B, nuoE, nuoF, nuoF, nuoH, nuoI, nuoJ, nuoK, nuoL, nuoM, nuoN, pckA, pfkA, pfkB, pflA, pflB, pflC, pflD, pgi, pgk, pntA, pntB, poxB, ppc, ppsA, pta, pur
	F, rpe, rpiA, rpiB, sdhA, sdhB, sdhC, sdhD, sfcA, sucA, sucB, sucC, sucD, talB, tktA, tktB, tpiA, trxB, zwf, pgl(Fraenkel, 1996), maeB(Fraenkel, 1996)
	: Carbon Source adhC, adhE, agaY, agaZ, aldA, aldB, aldH, araA, araB, araD, bglX, cpsG, deoB, deoC, fruK, fucA, fucI, fucK, fucO, galE, galK, galT, galU, gatD, gatY, glk, gntY, gpsA, lacZ, manA, melA, mulD, nagA, nagB, nanA, pfkB, pgi, pgm, rbsK, rhaA, rhaB, rhaD, srlD, treC, xylA, xylB
	gmr, goss, ucz, manz, meiz, muz, nugz, nugz, pmz, pg, pgm, ross, rucz, rucz, rucz, siz, rcc, syrz, syrz (d) Metabolism adi, aldH, al; ansk, ansk, argk, argk, argk, argC, argC, argF, argC, argH, aro, Rob, aro, C, aro, aro, aro, aro, aro, aro, aro, aro
	. aspC, avtA, cadA, carA, carB, cysC, cysD, cysE, cysH, cysI, cysI, cysK, cysM, cysN, dadA, dadX, dapA, dapB, dapD, dapE, dapF, dsdA, gabD, gabT, gadA,gadB, gdhA, glk,
	gltD, glyA, goaG, hisA, hisB, hisC, hisD, hisF, hisG, hisH, hisI, ilvA, ilvB, ilvC, ilvD, ilvE, ilvG_1, ilvG_2, ilvH, ilvH, ilvN, kbl, ldc
	leuC, leuD, lysA, lysC, metA, metB, metC, metE, metH, metK, metL, pheA, proA, proB, proC, prsA, putA, sdaA, sdaB, serA, serB, serC, speA, speB, speC, 5, speF, tdcB, tdh, thrA, thrB, thrC, tnaA, trpA, trpB, trpC, trpD, trpE, tynA, tyrA, tyrB, yg/G, yg/H, alaB(Reitzer, 1996), dapC(Greene, 1996), pat(McFall an
	, sper, taco, tan, tirz, tirzo, tarzo, tirzo, ta 1996), prr(McFall and Newman, 1996), sad(Bertyn et al., 1996). Methylhioadenosine nucleosidas (Glansdorff, 1996), 5-McHylhioribose kinase(Glansdorff
	tethylthioribose-1-phosphate isomerase(Glansdorff, 1996), Adenosyl homocysteinase(Matthews, 1996), L-Cysteine desul/hydrase(McFall and Newman,
	taminase A(McFall and Newman, 1996), Glutaminase B(McFall and Newman, 1996)
purB, purO	'yrimidine Metabolism add, adk, ann, apt, cdd, cmk, cod4, dcd, deoA, deoD, dgt, dut, gmk, gpt, gsk, guaA, guaB, guaC, hpt, muT, ndk, nrdA, nrdB, nrdE, nrdF, purA, ',purD, purE, purE, purE, purL, purM, purN, purI, pyrB, pyrC, pyrD, pyrE, pyrF, pyrG, pyrH, pyrI, tdk, thyA, tmk, udk, udp, upp, ushA, xapA, yicP, sylae(Neuhard and Kelin, 1996)
	Cofactor Metabolism across, biod, bioB, bioD, bioF, coa4, cvoE, cvsG, entA, entB, entC, entD, entE, entF, epd, folA, folC, folD, folE, folK, folP, gcvH, gcvP, gcvT, gltX, glvA, g
	, hemA, hemB, hemC, hemD, hemE, hemF, hemH, hemK, hemL, hemM, hemY, lhvC, lig, lpdA, menA, menB, menC, menD, menE, menF, menG, metF, mutnadA, nadB, na
ubiH, ubiA	l, pabA, pabB, pabC, panB, panC, panD, pakA, pakB, pakH, pakJ, pakK, panEB, parU, ribA, ribB, ribD, ribE, ribH, refC, hitE, hithG, thitH, thrC, ubAA, ubBB, ubC; ubiC ; yaaC, ygiG, nadDQPenfound and Foster, 1996), nadF(Penfound and Foster, 1996), nadG(QPenfound and Foster, 1996), panE(Jackowski, 1996), panCA(Penfound and Foster, 19 ound and Foster, 1996), thiBWhite and Spenser, 1996), thiDWhite and Spenser, 1996), thiCWhite and Spenser, 1996), thiDWhite and Spenser, 1996), thiCWhite and Spenser, 1996), thiDWhite
	und and roster, 1996), <i>mix</i> (white and spenser, 1996), <i>mix</i> (white and spenser, 1996) <i>mix</i> (white and spenser, 1996), <i>mix</i> (white and spenser), <i>mix</i> (
	(unitation 1996), Arabinose-5-phosphate isomerase(Karp et al., 1998), Phosphopantothenate-cysteine ligase(Jackowski, 1996), Phosphopantothenate-cystein
	lase(Jackowski, 1996), Phospho-pantetheine adenylyltransferase(Jackowski, 1996), DephosphoCoA kinase(Jackowski, 1996), NMN
	hase(Penfound and Foster, 1996)
	bolism accA. accB. accD. atoB. cdh. cdsA. cls. dgkA. fabD. fabH. fadB. gpsA. ispA. ispB. pgpB. pgsA. psd. pssA. pgpA(Funk et al., 1992) Metabolism ddlA, ddlB, galF, galU, glmS, glmU, htrB, kdsA, kdsB, kdtA, lpxA, lpxA, lpxB, lpxC, lpxD, mraY, msbB, murA, murB, murC, murD, murE, murF, murG, murI, rfaC,

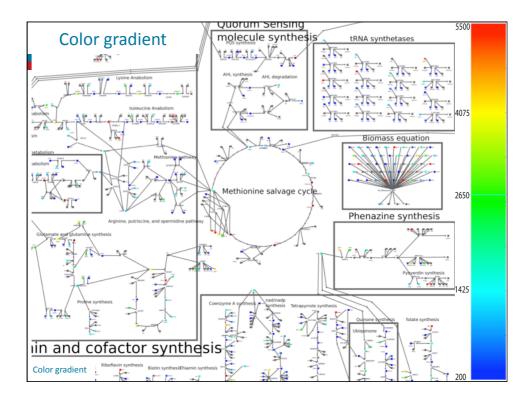


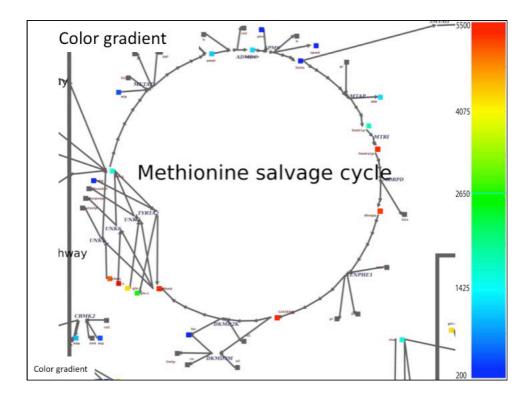


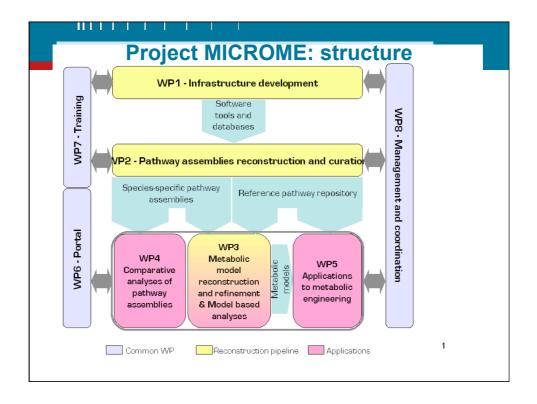


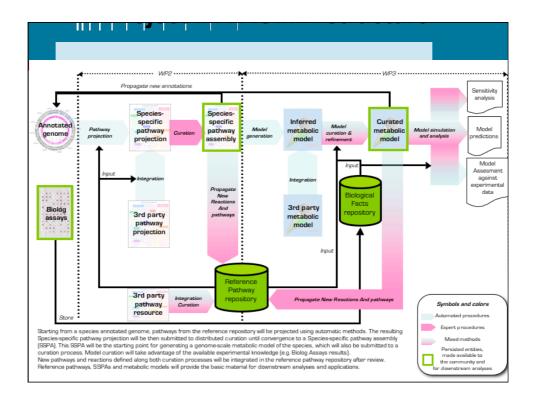


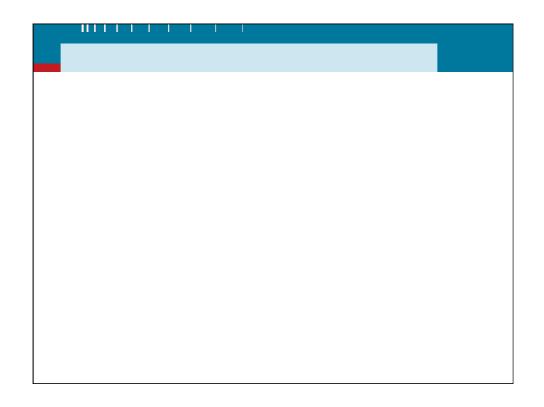


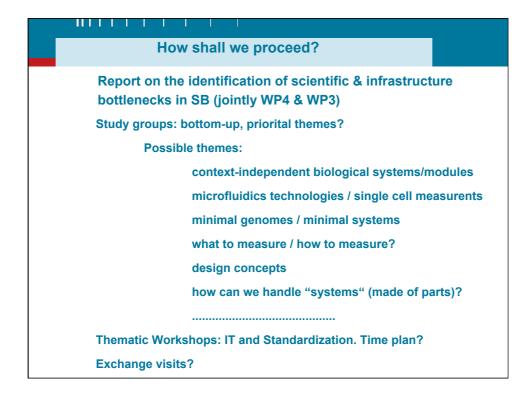












LOGICAL CONTEXTS		_	
I the Information together			
un atic Biology			
Synthetic Biology	Pathways Parts	Models	
Search Genomes Genes	Proteins Pathways		
Search		Created	
	Description	2009-04-18	
Genome	B amyloliquefaciens Reference	e server based on E server based on E Reference server E 2009-04-18	
B_amytoliquefaciens.EB1	n anthracis_Ames References	2009-04-18	
Ames.EB1	a anthracis_Ames_ancester	2009-04-10	
anthracis_Ames_ancestor.com	a anthracis_Sterne Reference	2009-04-10	
shearis Sterne,EB1	D COTOUS ATCC_10907 HOL	2009-04-10	
ATCC_10987.EBI	D CATALIS ATCC_1457 S NO.	2009-04-10	
ATCC_14579.001	B cereus_NVH_391_90 Her	1 FB1 as 2009-04-16	
B_cereus_NVH_391_98.EB1	n coreus ZK Reference set	2009-04-18	*
B_cereus_ZK.EB1	B clausii Reference server	based on EB1 assem 2009-04-18 erver based on EB1 a 2009-04-18	
B_clausii.EB1	B halodurans Reference s	erver based on EB1 a 2009-04-18	
B_halodurans.EB1	92.11		
8_haloudata			
4000			
3000			
2000			
1000			structures
		pathways proteins	
0 genes	interactions	Press	

EMERGENCE WP3 Information Technology Infrastructure for Synthetic Biology

Victor de la Torre & Alfonso Valencia Structural and Computational Biology Programme Spanish National Cancer Research Centre CNIO Madrid

Outline

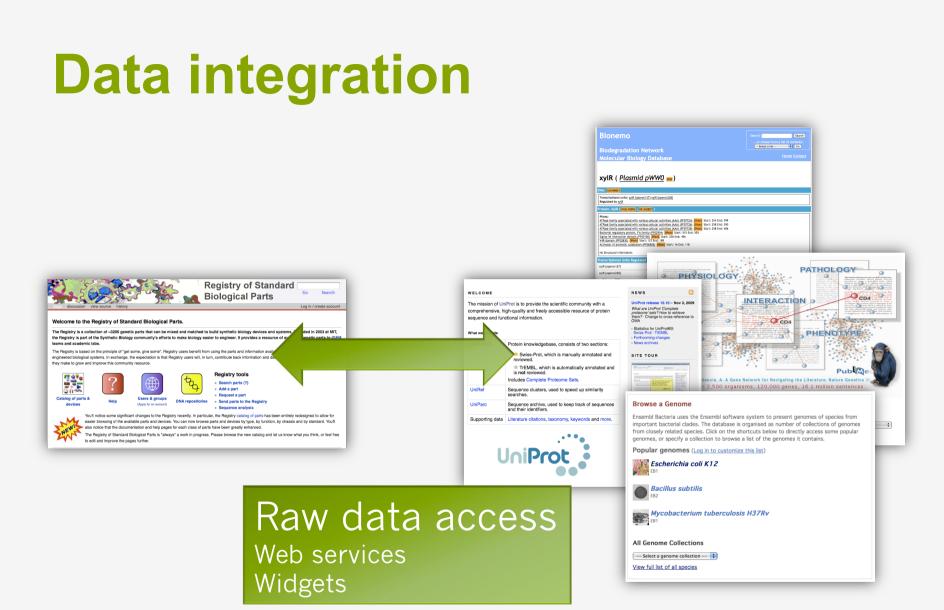
Introduction.

Integration between the MIT repository of parts and bioinformatics tools.

- Proposed solution and use cases.
- Adding new annotations.

EMERGENCE WP3 Information Technology Infrastructure for Synthetic Biology

- 3.1- Developing the concepts for integrated workflow infrastructure based on the registry
- 3.2- Implementation of the basic software infrastructure and the integration of tools and methods for sequence design and analysis
- 3.3- Development and integration of software for model-based sequence analysis and design
- 3.4- Proof of concept study with integrated system


Deliverables

- D.3.1 Document describing the concepts for integrated workflow infrastructure based on the registry
- D.3.2 Report describing the implementation of software and the integration of tools and methods for sequence design and analysis
- D.3.3 Report describing the software for model based systems design and analysis, and its integration
- D.3.4 Document describing the proof-of-concept study exploiting the integrated workflow for genetic circuit design

Proposed solution

ynthetic Biology		
Search Genomes Genes	Proteins Pathways Parts Models	
Genome	Description Created	
B_amyloliquefaciens.EB1	B amyloliquefaciens Reference server based or 2009-04-18	•
B_anthracis_Ames.EB1	B_anthracis_Ames Reference server based on E 2009-04-18	1
B_anthracis_Ames_ancestor.EB1	B_anthracis_Ames_ancestor Reference server 1 2009-04-18	
B_anthracis_Sterne.EB1	B_anthracis_Sterne Reference server based on 2009-04-18	
B_cereus_ATCC_10987.EB1	B_cereus_ATCC_10987 Reference server basec 2009-04-18	
B_cereus_ATCC_14579.EB1	B_cereus_ATCC_14579 Reference server basec 2009-04-18	
B_cereus_NVH_391_98.EB1	B_cereus_NVH_391_98 Reference server based 2009-04-18	
B_cereus_ZK.EB1	B_cereus_ZK Reference server based on EB1 as 2009-04-18	
B_clausii.EB1	B_clausii Reference server based on EB1 assem 2009-04-18	
B_halodurans.EB1	B_halodurans Reference server based on EB1 a 2009-04-18	•
4000 3000 2000 1000		

Biological Contexts is a web client that allows users to connect biological information extracted from different resources.

Advantages

- Data is maintained by each group.
- Web services can exchange data in an efficient way.
- Common visualizations across different sites. (Visualization APIs).
- Setup the basis for exponential expansion of the knowledge.

Problems and challenges

Uncovered genomes.

Information is not curated in most of the cases.

Many web pages with information but without raw data access mechanisms.

Slow services.

Parts Registry

Welcome to the Registry of Standard Biological Parts.

The Registry is a collection of ~3200 genetic parts that can be mixed and matched to build synthetic biology devices and systems. Founded in 2003 at MIT, the Registry is part of the Synthetic Biology community's efforts to make biology easier to engineer. It provides a resource of available genetic parts to iGEM teams and academic labs.

The Registry is based on the principle of "get some, give some". Registry users benefit from using the parts and information available from the Registry in designing their engineered biological systems. In exchange, the expectation is that Registry users will, in turn, contribute back information and data on existing parts and new parts that they make to grow and improve this community resource.

You'll notice some significant changes to the Registry recently. In particular, the Registry catalog of parts has been entirely redesigned to allow for easier browsing of the available parts and devices. You can now browse parts and devices by type, by function, by chassis and by standard. You'll also notice that the documentation and help pages for each class of parts have been greatly enhanced.

The Registry of Standard Biological Parts is *always* a work in progress. Please browse the new catalog and let us know what you think, or feel free to edit and improve the pages further.

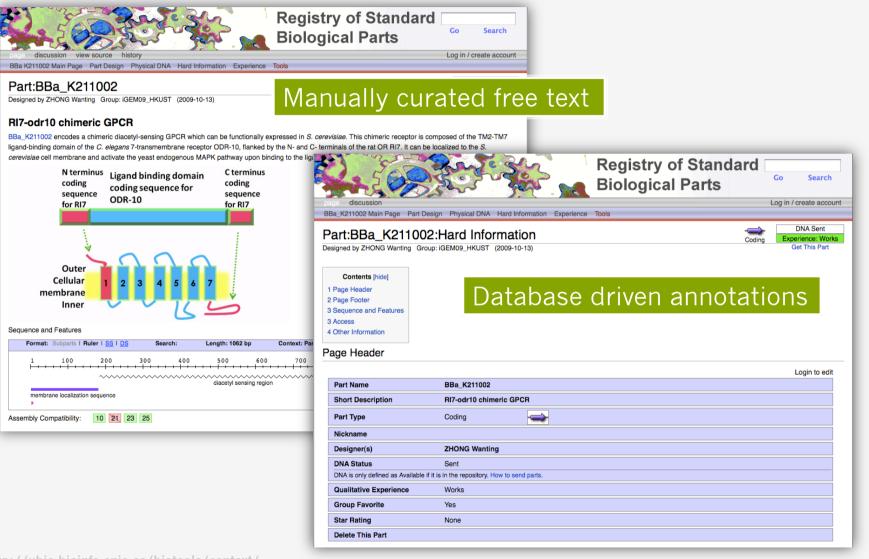
Parts Registry

Biosynthesis: Parts involved in the production or degradation of chemicals and metabolites are listed here.

Cell-cell signaling and quorum sensing: Parts involved in intercellular signaling and quorum sensing between bacteria.

Cell death: Parts involved in killing cells.

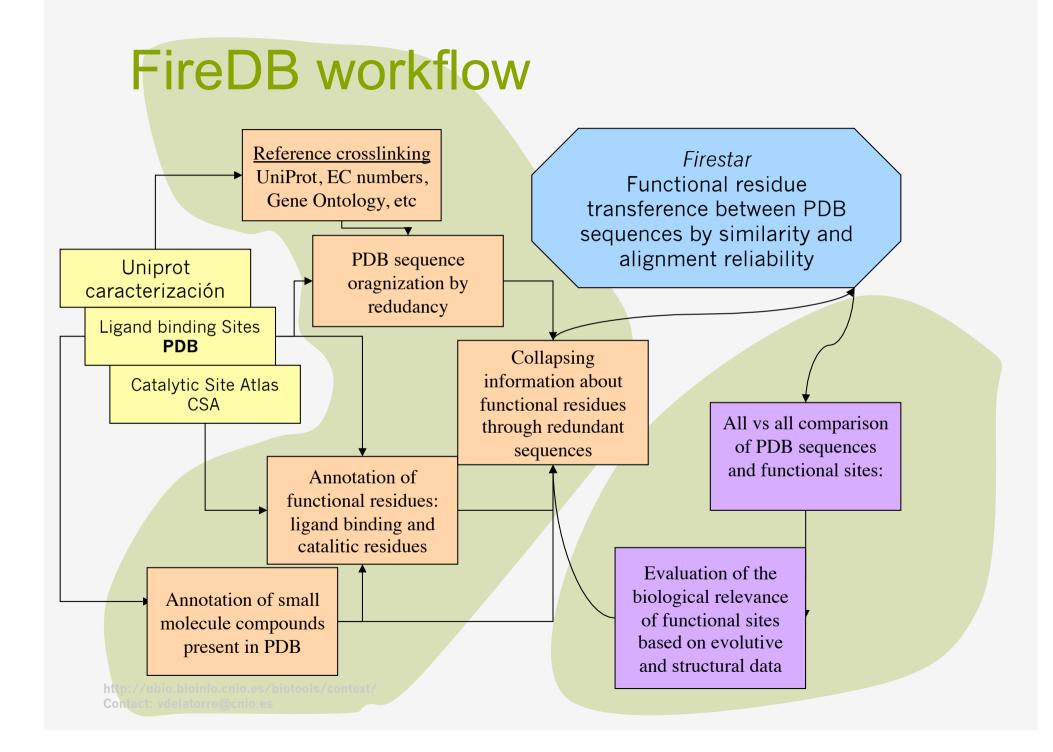
Coliroid: Parts involved in taking a bacterial photograph.

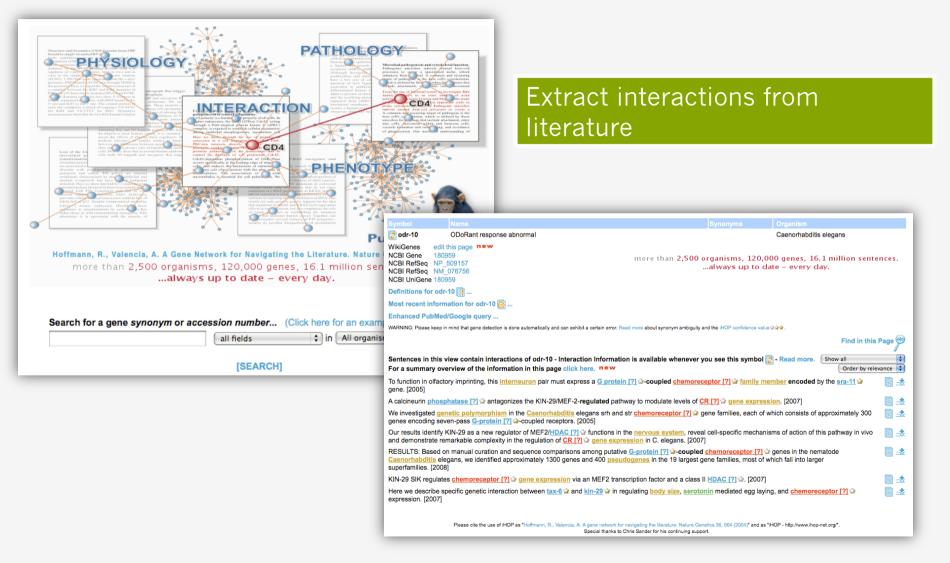

Conjugation: Parts involved in DNA conjugation between bacteria.

Motility and chemotaxis: Parts involved in motility or chemotaxis of cells.

Odor production and sensing: Parts the produce or sense odorants.

DNA recombination: Parts involved in DNA recombination.


Parts Registry


Biological databases and tools

FireDB. Functionally residues

fireDB: a databas	e of annotated functior	ally important residues		
fireDB is a database residues.	of <u>PDB</u> structures and thei	r associated ligands. fireDB also contair		
A detailed description	of the functionalities of this pa	ge can be found in the FireDB online help.	functiona	ally important
Annotated functionally	important residues come fron	n protein-ligand atom contacts and the \underline{Catal}		
Search the database	e by:	Atomic distance cut-off (in Angstroms)		fireDB
PDB chain (e.g. 101m	or 1tcoC) 2d	g9A ○ 0.5 A + Van der Waals radii	Calculate contacts between proteins and ligands with	
UniProt primary access	sion number (e.g. P62942)	01.0 A + Van der Waals radii	, , , , , , , , , , , , , , , , , , , ,	1111
PDB/UniProt keyword		 1.5 A + Van der Waals radii 	The Ligand Contact Tool	
submit				
2dq9	ISOMERASE			
2dg9A	FK506-BINDING PROTEIN	1A		
<u>P62942</u>		rolyl cis-trans isomerase FKBP1A; Short=PP1 : Full=Rotamase; AltName: Full=Immunophi		
EC numbers	<u>5.2.1.8</u>			
Mutations	YES			
GO:0006457	protein folding			
NUMBERING: hold the mouse	over the sequence to check titles with n	umbers. Note that consensus numbering is sequential and	for the query 2dg9A and site lines numbers belong to	o the PDB coordinate files.
Consensus		GRTFPKRGQTCVVHYTGMLEDGKKFD		
2dg9A		GRTFPKRGQTCVVHYTGMLEDGKKFD		
Square Literature catalytic site				
E=6 69% ~RAP	EXPAND	Y- G	R FKF QEVI R- L -	
E=0 17% _SO4	EXPAND			
E=0 14% <u>NH4</u>	EXPAND			
E=1 3% <u>SO4</u>	EXPAND			R
E=3 1% B7G	EXPAND			
(*********) 4 ►

iHOP

Bionemo

-			
Bi			\mathbf{n}
- 11		-	

Biodegradation Network Molecular Biology Database Search: ...or choose from a list of con - Select a list - Database of Bionemo stores manually curated information about proteins and genes directly implicated in biodegradation metabolism

xylR (<u>Plasmid pWW0</u> NOB)

VA: AJ344068.1 Transcriptional units: <u>xyIR [operon127] xyIR [operon228]</u> Legulated by xyIR	Sequence Entry: AJ344068.1			
otein: XylR (XYLR_PSEPU , NP_542857)	Transcription Start Site: 4327 Direction: - Sigma Factor: 70	8		
fams: <u>TPase family associated with various cellular activities (AAA) (PF07724)</u> [Pfam] Start: 254	E Genes			
TPase family associated with various cellular activities (AAA) (PF07726) [Pfam] Start: 258 TPase family associated with various cellular activities (AAA) (PF07728) [Pfam] Start: 258				
acterial regulatory protein, Fis family (PF02954) [Pfam] Start: 515 End: 555 igma-54 interaction domain (PF00158) [Pfam] Start: 236 End: 456	Binding sites			
AR domain (PF02830) [Pfam] Start: 127 End: 189 ctivator of aromatic catabolism (PF06505) [Pfam] Start: 16 End: 118	Regulator <u>xylR</u>	Coordinates (43259, 43274)	Sequence TTTAGCATTTGCTTAG	Db Entry AJ344068.1
lo Structural information	xylR	(43289 , 43304)	TTAACCAATTGATTAA	AJ344068.1
inscriptional Units Regulated	Regulation			
IR [operon127] IR [operon228]		ng sites: (43259 , 43274) (43289 , 4 hyde Toluene 4-nitrotoluene m-Xyle	3304) ene 2-nitrotoluene <u>Adenosine 5'-triphosphate 3-</u> M	ethylbenzylalcohol p-Xylene m-amino-
IS [operon229]				
vluwcMABN [operon95]		au	to-repression	
fectors				
-nitrotoluene 3-Methylbenzylalcohol 4-Chlorobenzaldehyde 4-nitrotoluene Adenosine 5		xyl	1R	XyIR XµIR
		500 bp		43278
		300 bp		

Contact: vdelatorre@cnio.es

Web Interface and use cases http://ubio.bioinfo.cnio.es/biotools/context/

Get information about parts

Build new design or redesign composite parts.

Link to BioModels

BBa_K118000. dxs coding sequence encoding 1deoxyxylulose-5-phosphate synthase

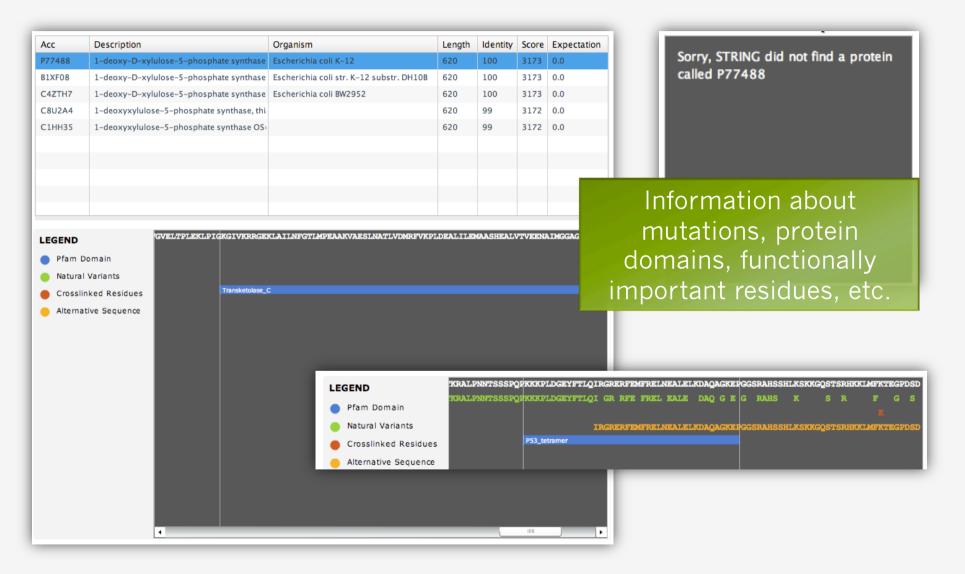
dxs coding sequence encoding 1-deoxyxylulose-5-phosphate synthase

This is the coding sequence of *dxs* from *Escherichia coli* JM109. It encodes 1-deoxyxylulose-5-phosphate synthase, thiamine-requiring, which catalyses the first step in the biosynthesis of terpenoids. Overexpression of dxs has been reported to increase yields of carotenoids and other terpenoids (Kang, M.J., Lee, Y.M., Yoon, S.H., Kim, J.H., Ock, S.W., Jung, K.H., Shin, Y.C., Keasling, J.D., and Kim, S.W. 2005. Identification of genes affecting lycopene accumulation in *Escherichia coli* using a shot-gun method. Biotechnology and Bioengineering **91**, 636-642).

Sequence and Features

Format: Subparts I F	tuler <u>SS</u> <u>DS</u>	Search:	Length: 1	1866 bp	Context: Part	only	Get selected se	equence	
	400	600	800	1K	1.2%	1.4K	1.6K	1.8K	2K
			dxs coding se	equence					
Assembly Compatibility:	10 21 23 2	25							

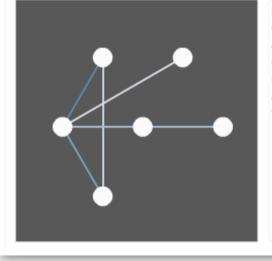
Start searching


nthetic Biology		Search Registry
	teins Pathways Parts Models	by part name
Browse Bacterial Genomes Search Parts Registry		by pare name
Search Biological Databases		
provides a resource of available genetic p Enter the part name (e.g BBa_C017		
BBa_K118000 Search		

	L CONTEXI	S	SYNTHETIC BIO	LOGY			
	C Biology	s Proteins Pathways Parts Models Get Similar Biolog Add To Design Save Design	ical Entities	prot usi		or a	
Results Part Name BBa_K118000					algori		
Part Name	Acc	Description	Organism	2	algori	thm	IS.
Part Name	Acc P77488	Description	Organism Escherichia coli K-12			thm	
Part Name		Description 1-deoxy-D-xylulose-5-phosphate synthase 1-deoxy-D-xylulose-5-phosphate synthase	Escherichia coli K-12	C Length	algori Identity	thm Score	IS. Expectatio
Part Name	P77488	1-deoxy-D-xylulose-5-phosphate synthase	Escherichia coli K-12 Escherichia coli str. K-12 substr. DH10B	C Length 620	Identity 100	Score	Expectation
Part Name	P77488 B1XF08	1-deoxy-D-xylulose-5-phosphate synthase 1-deoxy-D-xylulose-5-phosphate synthase	Escherichia coli K-12 Escherichia coli str. K-12 substr. DH10B	Length 620 620	Identity 100	Score 3173 3173	Expectation

Retrieving protein annotations

Search	Genomes Genes	Proteins Path	ways Parts M	odels	R			annota differe		5
		Protein Annota		-		(data	abases	5	
Acc	Description	Protein Sequen Protein Interac		•	Length	Identity	Score	Expectation		
P77488	1-deoxy-D-xylulose-5-p	Search similar	in the Part Registry		620	100	3173	0.0		
B1XF08	1-deoxy-D-xylulose-5-pl		<u> </u>	2 substr. DH10B	620	100	3173	0.0		
C4ZTH7	1-deoxy-D-xylulose-5-pl				620	100	3173	0.0		
C8U2A4	1-deoxyxylulose-5-phos	ohate synthase, thi			620	99	3172	0.0		
C1HH35	1-deoxyxylulose-5-phos	ohate synt UNIPROT	ANNOTATIONS							
			deoxy–D–xylulose–5–pł	hosphate synthase	(ACC P774	188)				
		TAXONOM	/IY: Escherichia coli (stra	ain K12) ()						
		MOLECUL	AR FUNCTION: Transfe	erase						
			N: Catalyzes the acyloin oxy-D-xylulose-5-pho:		tion betwe	en C atoms	s 2 and	3 of pyruvate an	nd glyceralde	hyde 3-pl
		CATALYT	IC ACTIVITY: Pyruvate	+ D-glyceraldehyd	e 3-phosp	ohate = 1-	deoxy-l	D-xylulose 5-ph	osphate + C	O(2).
		SIMU ADD	V: Polongs to the transl	katalasa family DV	PS subfam	ibz				
		SIMILARI	Y: Belongs to the transk	ketolase family. DX	rs subram	iiy.				


Sequence features

Protein Interactions

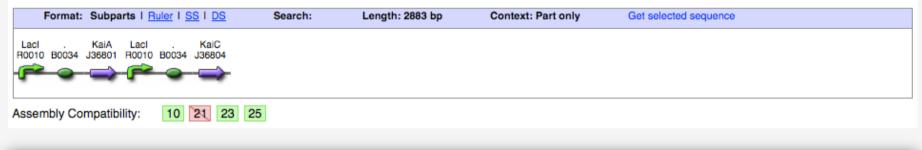
Acc	Description	Organism	Length	Identity	Score	Expectation
Q18807	ODR10 OS=Caenor	Caenorhabditis eleg	339	97	1385	9.9999999999999999
C3U4Y0	ODR10 OS=Caenor		342	75	1271	9.9999999999999999
C3U4Y6	ODR10 OS=Caenor		342	75	1270	9.9999999999999999
C3U4Y1	ODR10 OS=Caenor		342	75	1270	9.9999999999999999
C3U4Y2	ODR10 OS=Caenor		342	75	1266	9.9999999999999999
			ir	love acros nteraction v clicking		

STRING interactions (Click on a node to see more details)

protein odr-10

odr-10 encodes a member of the 7-transmembrane family of odorant receptors which affects chemotaxis to the volatile odorant diacetyl. ODR-10 is strongly expressed in the cilia of the AWA olfactory neurons and, at low levels, in the CEP neurons. expression of odr-10 mRNA and of an odr-10::GFP fusion gene is greatly reduced in odr-7 mutant animals, suggesting that odr-7, which encodes a predicted transcription factor, functions upstream of odr-10 in specifying AWA neuronal cell fate

Pathways


		Keg	g Pathways					
c	Description	Organism	Length	Identity	Score	Expectation		
7488	1-deoxy-D-xylulos	Escherichia coli K-1	620	100	3173	0.0		
XF08	1-deoxy-D-xylulos	Escherichia coli str.	620	100	3173	0.0		
ZTH7	1-deoxy-D-xylulos	Escherichia coli BW	620	¹ Supthot	tic Piology			
3U2A4	1-deoxyxylulose-5		620	₉ Synthe	tic Biology			
LHH35	1-deoxyxylulose-5		620	9 Search	Genomes Genes	Proteins Pathways	Parts Models	
				Acc 9774	GG PATHWAY			
ithway				C4ZT C8U2	TERPENOID BA	CKBONE BIOSYNTHESIS	Checkeria	
j00900				CINH			(Glycolysis))
j01100 (-	-			Acetyl-CoA	2.3.1.9 pyruv	2.2.1.7
				Pathe		2.3	Acetoacetyl-CoA	1.1.2eoxy-D-xylulose 5-phosphate 1.1.1.267 2-C-Methyl- D-erythmiol 4-phosphate
				ecj01		3-Hydroxy-3-methyl- glutaryl-CoA		2.7.7.60
					Me	valonate pathway	1.1.34 1.1.1.88	4 (Cytidine S-diphospho)- 2-C-methyl-D-erythritol
						Mevalonate	1.36	2-Phospho-4-(cytidine 5'-diphosph 2-C-methyl-D-erythritol 4.6.1.12
						, Mevalonate-SP (\$	2-C-Methyl-D-erythritol 2,4-cyclodiphosphate

Build new designs or redesigning composite parts

Lac+RBS+KaiA+Lac+RBS+KaiC

Composite of J36831 and J36834. KaiA and KaiC protein expression in the ratio 1:2 by amount or ~1:4 by mass.

Sequence and Features

Part Name		
BBa_J36335		
BBa_R0010		
BBa_B0034		
BBa_J36801		
BBa_R0010		
BBa_B0034		
BBa_J36804		

Adding Parts to a new design

Search	Genomes	Genes	Proteins	Pathways	Parts	Models						
					Get S	imilar Biologica	al Entities 🧹					
					Add F	Part To Design						
Selected	part is a com	iposite pa	art formed k	by:	Save	Design						
Part Name												
BBa_J36335												
BBa_R0010												
BBa_B0034												
BBa_J36801											_	
BBa_R001	Acc	Descr	ription					Organi	Length	Identit	Score	Expectat
BBa_B003	Q5N594	Circad	dian clock pro	tein KaiC OS=Sy	nechococo	cus sp. (strain AT	CC 27144 / PCC	Synech	519	100	2624	0.0
BBa_J3680	Q79PF4	Circad	dian clock pro	tein kinase kaiC	OS=Synec	hococcus elonga	tus (strain PCC 7	Synech	519	100	2624	0.0
	A0MVY7	KaiC C	OS=Leptolyng	bya boryana IAN	M-101 G	N=kaiC PE=4 SV=	- 1		517	82	2226	0.0
_	A0YK92	Circad	dian clock pro	tein KaiC OS=Ly	ngbya sp.	PCC 8106 GN=L8	8106_06509 PE=		522	81	2198	0.0
	B4W3D4	Circad	dian clock pro	tein KaiC OS=Mi	icrocoleus	chthonoplastes I	PCC 7420 GN=MC		519	82	2188	0.0

Adding other proteins

Search	Genomes Genes	Proteins Pat	hways Parts Mo	dels	-	-				ission to
		Protein Annot	tations							y is not
		Protein Seque	nce				ye	et in	nplen	nented
Acc	Description	Protein Intera	ctions	•	Organi	Length		score		
Q5N594	Circadian clock pro	Search simila	r in the Part Registry	27144 / PCC	Synech	519	100	2624	0.0	
Q79PF4	Circadian clock pro	Add Protein T	o Design 🗧 👘	(strain PCC 7	Synech	519	100	2624	0.0	
A0MVY7	KaiC OS=Leptolyngb	oya boryana IAM M	-101 GN=kaiC PE=4 SV=1			517	82	2226	0.0	
A0YK92	Circadian clock prot	ein KaiC OS=Lyng	bya sp. PCC 8106 GN=L81	.06_06509 PE=		522	81	2198	0.0	
B4W3D4	Circadian clock prot	ein KaiC OS=Micro	ocoleus chthonoplastes PC	C 7420 GN=MC		519	82	2188	0.0	
		Search	Genomes Genes Prot	eins Pathways	s Parts	Mode	els			
		_			Get	: Similar B	liological	Entities		
						d Part To	4			
		Entity	Sequence			e Design				
		BBa_J36804 B4W3D4	ATGACTTCCGCTGAGATGACTA MSPFNLDEQRPDEFTTPGVHKIRT							
		DINISOT	NOT THE DE QUI DE L'HI GYTHAN			Junantien	ingi zinta	i qi bbi q		

Implement BioModels ?

Search Genomes Genes	Proteins Pat	thways Parts	Models				
Browse Bacterial Genomes							
Search Parts Registry							
Search Biological Databases	mat						
MEEPQSDPSVEPPLSQETFSDLWKLLPE	-	-				•	
DEAPRMPEAAPRVAPAPAAPTPAAPA SVTCTYSPALNKMFCQLAKTCPVQLW							
RCSDSDGLAPPQHLIRVEGNLRVEYLD							
SCMGGMNRRPILTIITLEDSSGNLLGR	Search Gen	omes Genes	Proteins Path	iways Parts	Models		
PGSTKRALPNNTSSSPQPKKKPLDGE GSRAHSSHLKSKKGQSTSRHKKLMFK					Get BioModels		
Search	Acc	Description	Organism	Length	Identity	Score	Expectation
	Q2XN98	Cellular tumor anti <u>c</u>	Homo sapiens	393	100	2119	0.0
	P04637	Cellular tumor antiç	Homo sapiens	393	100	2119	0.0
	Q5U0E4	Cellular tumor antig	Homo sapiens	393	99	2117	0.0
	B6E4X6	Cellular tumor antig		393	99	2110	0.0
	Q2XSC7	Cellular tumor antig	Homo sapiens	393	99	2103	0.0
	BioModel						
	BIOMD00000018	8					
	BIOMD00000020						

Get BioModel description

Compare models with pathways

CAMP O

PKC

GLK

HGK

HPK1

NF1

p120GAP

Scaffold

PKA

Rap1

RafB

Rafi

+p Tpl2/Cot

MEKK:

MLK3

Mos

RasGRF CNmGEF

×

+r

MP1

+p • E

PTP

FLNA JIP3 ARRB CrkII

JIP1/2

★ MKK4 +p

MKK7

Phosphatidylinositol signaling system

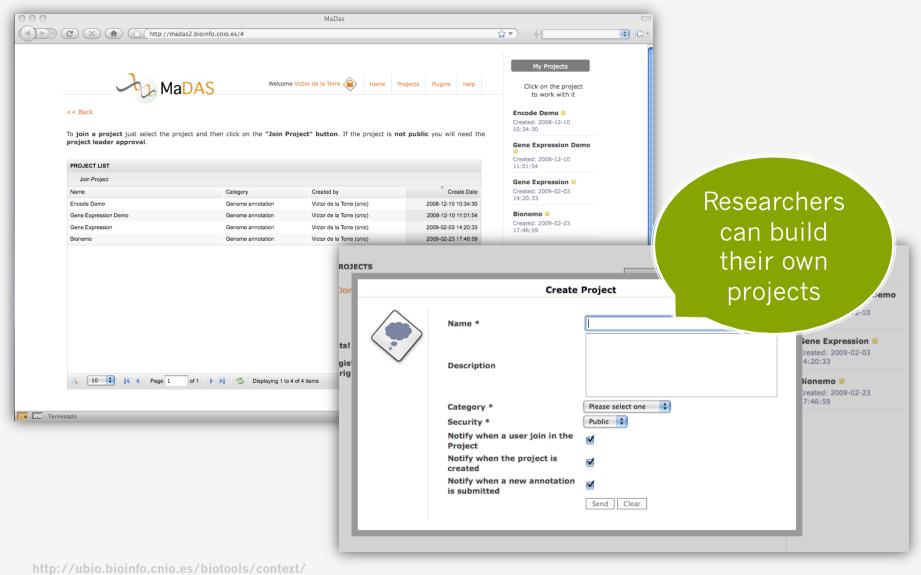
Scaffold

MEK1

MEK2

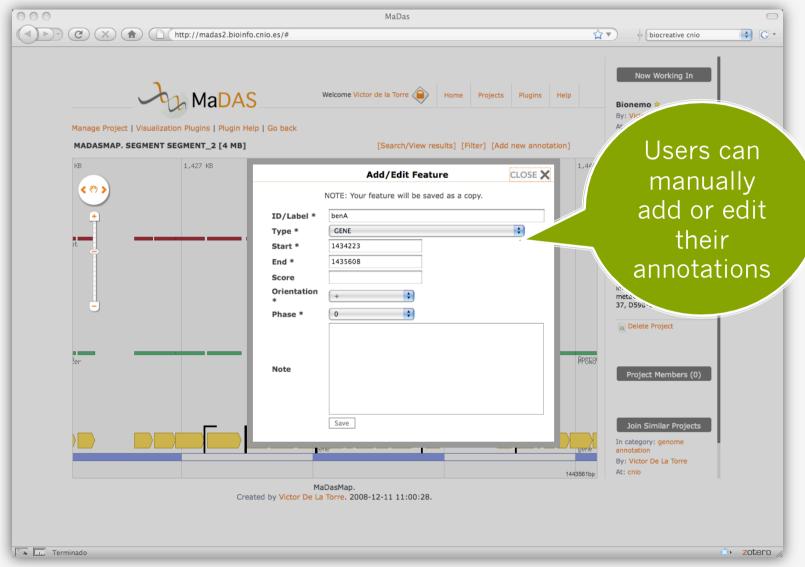
4.00	This a model from the article:	
CICCONCENT CICCON	antagonism between two of these and other master regulators have been an excess of Cdx2 over Oct4 determines the trophectoderm lineage whe differentiation into the endoderm lineage. Also, under/over-expression s some self-renewal/pluripotency as well as differentiation genes are expr concentration of Oct4. METHODOLOGY/PRINCIPAL FINDINGS: We construc- from ChIP-on-chip and microarray data as well as literature studies. The wo plausible assumptions; activation of Gata-6 by Oct4 and repression assumptions, the results of simulations successfully describe the biphasic predicts that reprogramming the network from a differentiated state, in j best achieved by over-expressing Nanog, rather than by suppression of computational model provides a mechanistic understanding of how differ	
BIOM		JNK and p 38 MAP kinase pathway

4


Adding new annotations

MaDAS system

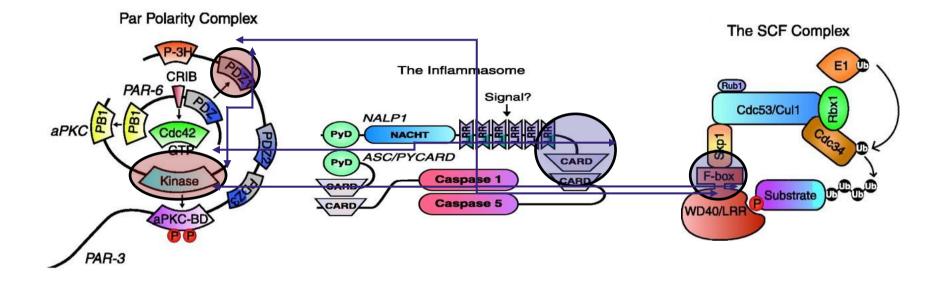
(http://madas2.bioinfo.cnio.es)


- Submission to the part registry (Not yet implemented)
- Submission to MaDAS (Not yet implemented)

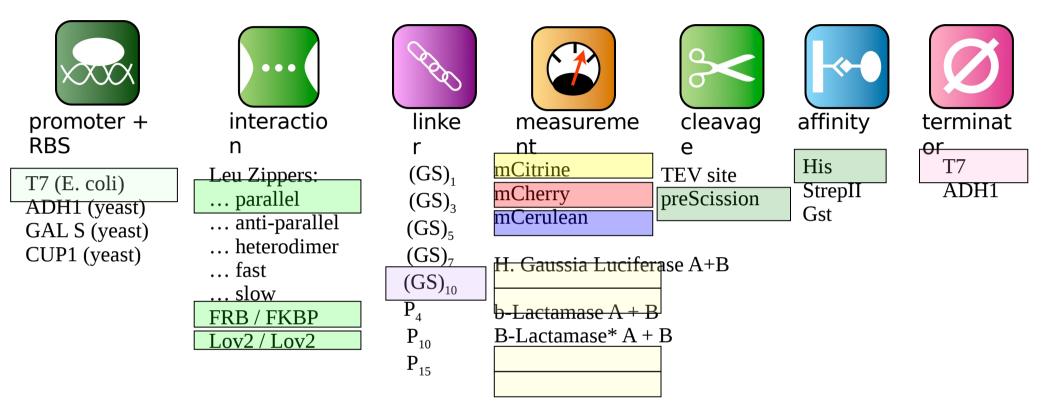
MaDAS. Project based annotation system

Contact: vdelatorre@cnio.es

Adding new annotations

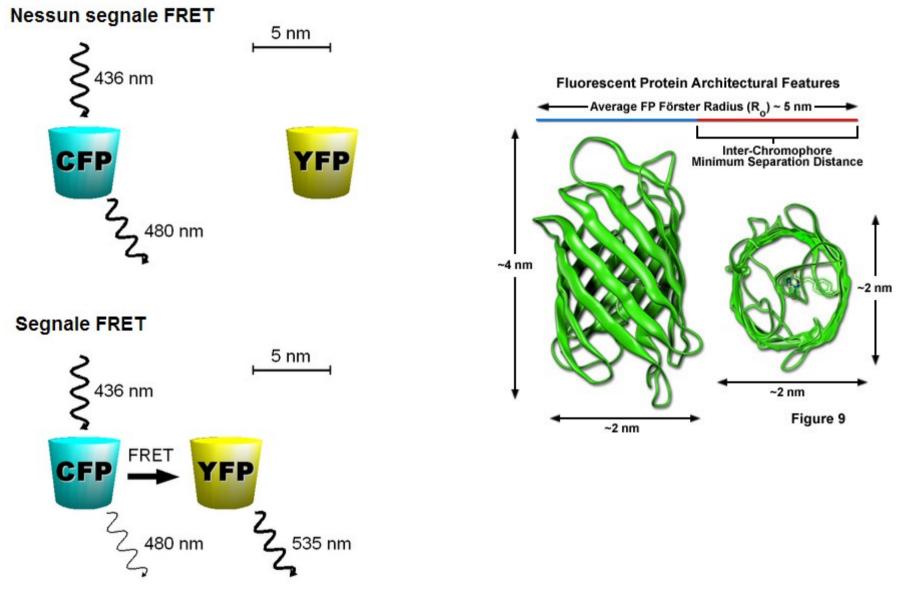


Acknowledgments


- MIT Parts Registry: Randy Rettberg.
- FireDB: Gonzalo López.
- Bionemo: Guillermo Carbajoza, Almudena Trigo.
- IHOP: Robert Hoffmann, Martin Krallinger, Jose M. Fernandez.
- Idelfonso Cases and Alfonso Valencia.

Thanks!

Protein Synthetic Biology


Protein BioBricks

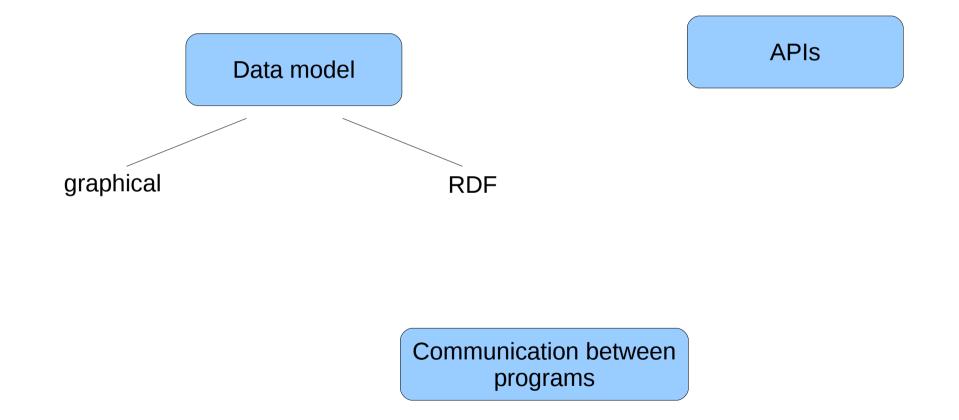
*

FRET Crash Course

Enhanced FRET

R

Α


В

Systematic in-silico (foldX) screen of 100K combinations of mutations for sets that improve FRET signals.

9 variants of cyan (CFP) 6 variants of yellow (YFP) 2 variants of red (RFP)

PoBOL ->SBOL

Synthetic Biology Open Language

A foundation for Synthetic Biology in Europe

WP4

(Victor de Lorenzo & Nicolas Szita)

Towards a consensus language for synthetic biology

Esteban Martínez (CNB, CSIC) Towards a consensus language for synthetic biology

Deliverables WP4:

4.1: Database on quantitative promoter performance

4.2: Application of design tools on standardized promoters

Towards a consensus language for synthetic biology

Deliverables WP4:

4.1: Database on quantitative promoter performance Not achieved Not an adequate format yet! 4.2: Application of design tools on standardized promoters Why not adequate? Great variability in promoter data measurements Not reliable

Database on quantitative promoter performance

Great variability in promoter data measurements

Promoter data obtained with indirect measurements (reporters)

- Structural genes (promoter-less)
- What are reporter genes?
- Not present in the organism under study
- Easily measurable and quantifiable products

Variability points:

- 1- Reporters
- 2- Genetic tools: vectors & chassis

Review paper project dealing with transcription/reporter systems in BIOESSAYS

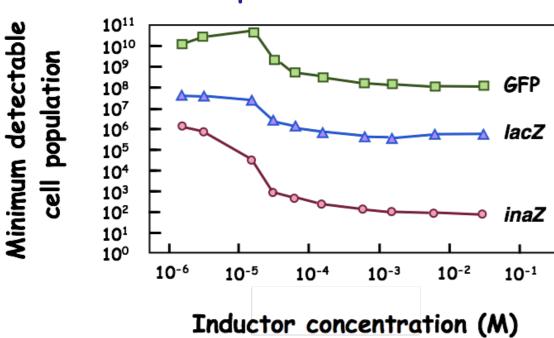
Variability in measurements

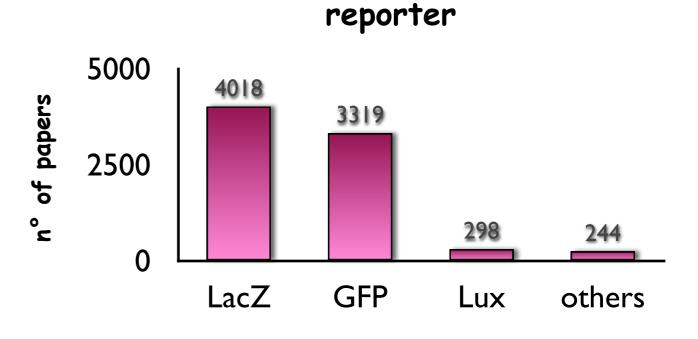
1-Variability within reporters

1.1- Different type of reporters

- Most used:	Enzymatic signal	lacZ
	Visual signal	<i>lux</i> or <i>gfp</i>
- Others:	Ice nucleation	inaZ
	Enzymatic signal	gusA

1.2- Differences within the same reporter


Different genetic variants of the same reporter gene

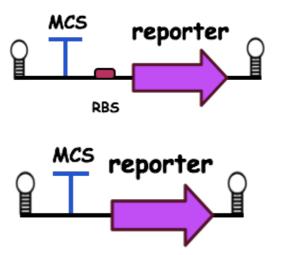

- *lacZ* or *trp-lacZ*
- Many gfp versions: gfp-WT or egfp, etc (differences over 80-fold more fluorescence)
- Complete lux operon vs. luxAB

So, what reporter is best?

lux	GFP	lacZ	
Non-invasive	Non-invasive	Invasive & Non-invasive	
No excitation	Excitation	No excitation	
Population	Population & Single cell	Population & Single cell	
Costly	Non-costly	Non-costly	
Dimer	Monomer	Tetramer	

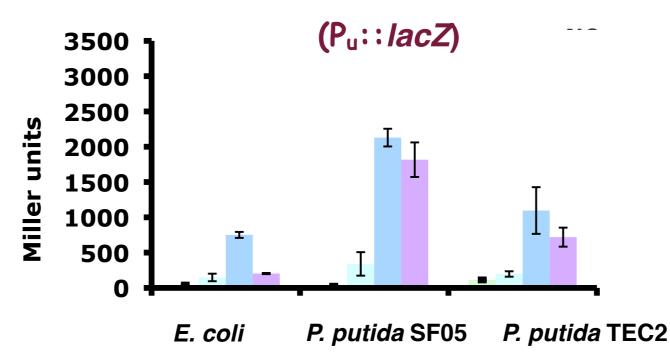
Reporter sensitivities

Miller et al. App. Environ. Micro. 2001


Mostly, depends on the experiment settings

Variability in measurements

- 2- Variability in genetic tools
 - 2.1 Type of reporter fusion
 - Transcriptional fusions
 - Translational fusions



- Copy number: Multi-copy vs. low-copy vs. mono-copy
- Host range (not only for E. coli)
- Stability (without antibiotic selection)
- 2.3- Chassis
 - Genetic repertoire
 - Background levels

Promoter measurements variability examples **Reporter differences** (P_u::*lacZ*) (P_u::*lux*) 1250 M. U. 1400 25000 21000 A. U. Beta-Galactosidase (Miller units) 007 008 0001 008 0001 008 0001 008 0001 Specific bioluminiscence 20000 15000 10000 5000 0 0 No induction No induction Induction Induction

Strain differences

Towards a consensus language for synthetic biology

Deliverables WP4:

4.1: Database on quantitative promoter performance Not achieved Not an adequate format yet!

4.2: Application of design tools on standardized promoters

- Develop Standard Genetic Tools

Plasmids vectors & Genome integration systems

- Standard measures

Towards a consensus language for synthetic biology

What do we need to develop SB field further?

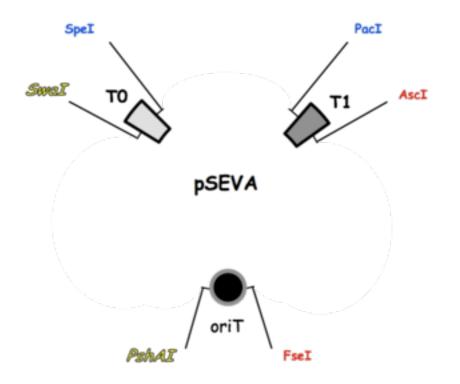
Expression systems to build regulatory complex networks

(lacI-Plac, TetR-Ptet & CI-PRM)

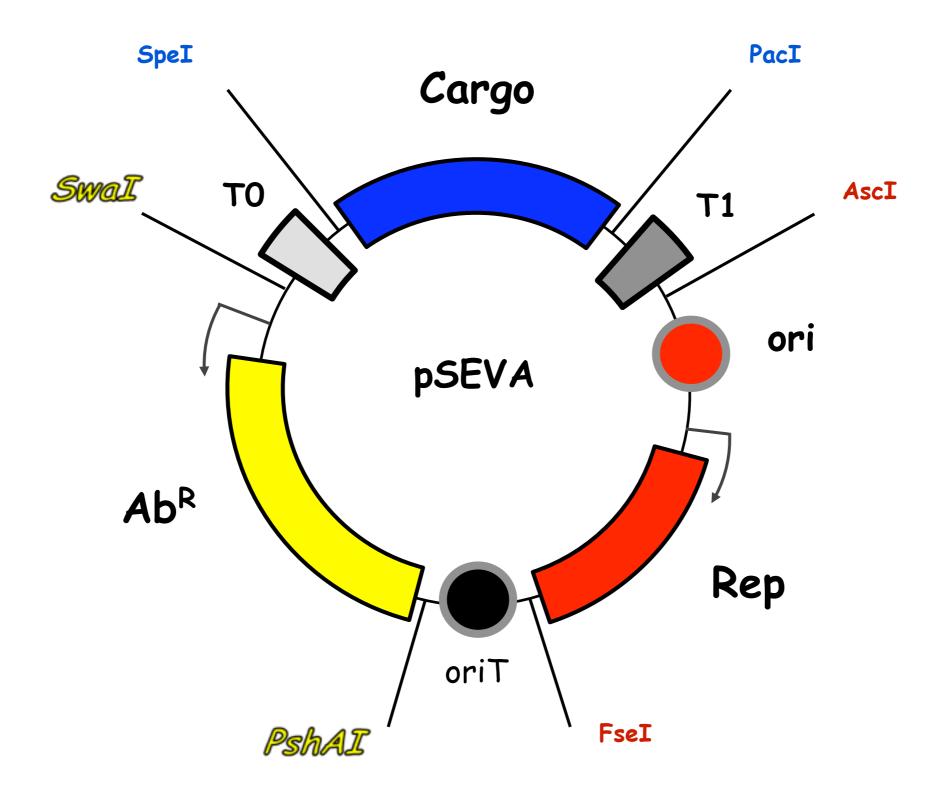
Define promoter activity and regulators in a standard fashion

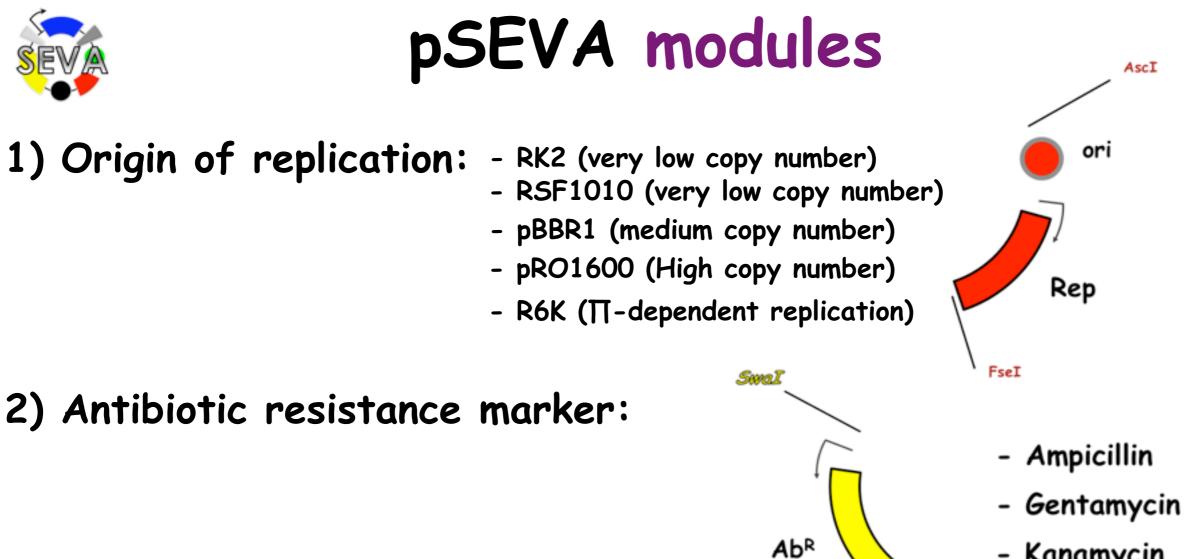
Standard Genetic tools

Backbone


- Minimal origin of transference: oriT-RP4 (260 bp)
- Terminators: T₀

 T_1


Modules


- 1) Origin of replication
- 2) Antibiotic resistance marker
- 3) Cargo site
- Modules flanked by rare cutting restriction enzymes

Backbone & modules curated of common restriction sites

pSEVA

PacI

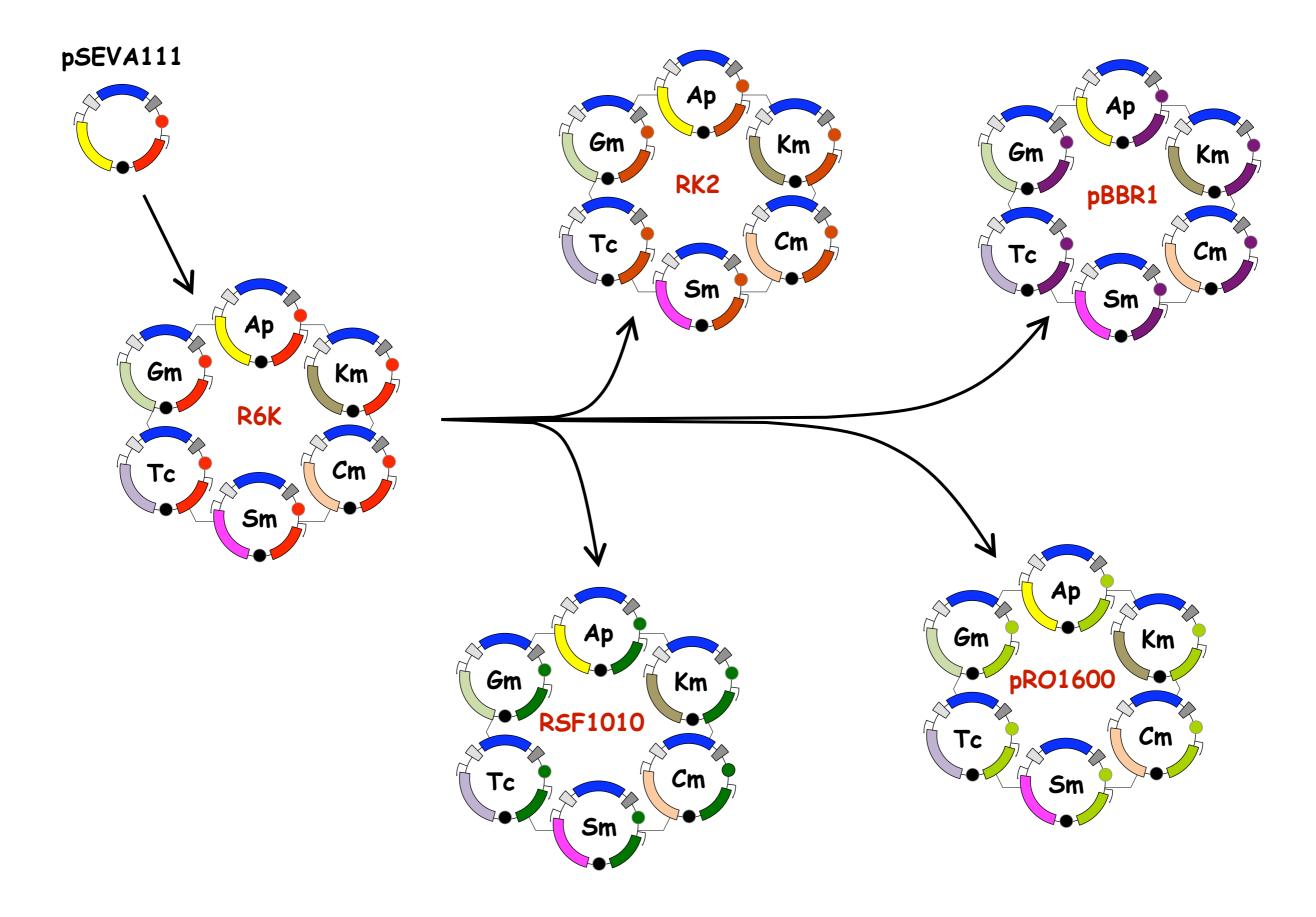
- Streptomycin
- tetracycline

PshA

- Chloramphenicol

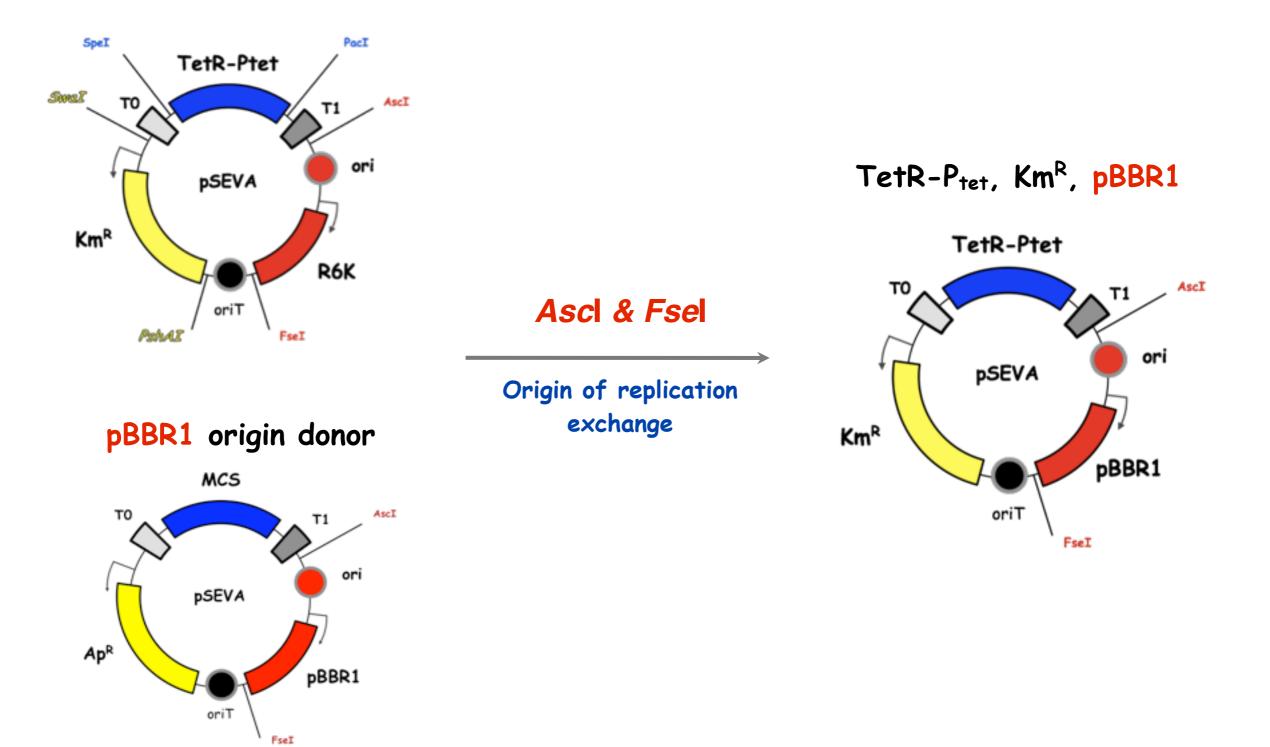
- Cargo polylinker: pUC18 enzymes plus NotI, SfiI & AvrII

Cargo


- Cloning cargos: $lacZ\alpha$ from pUC19 & pUC18

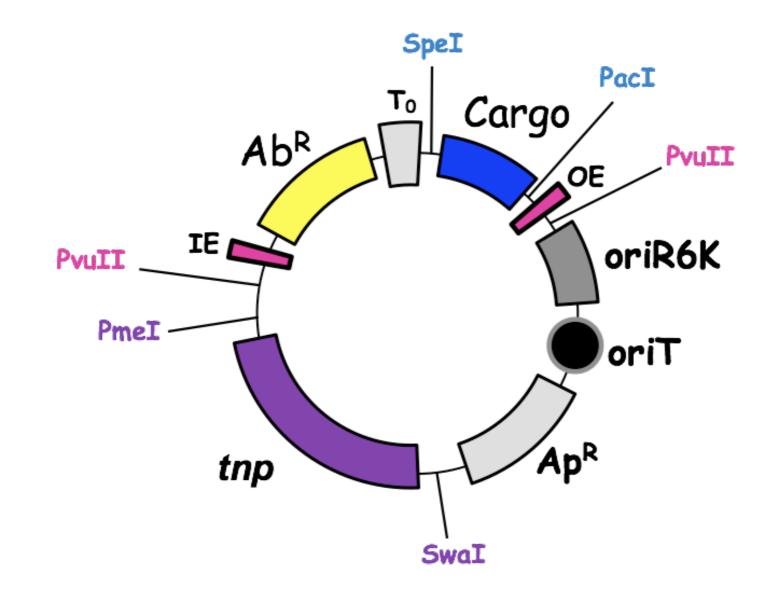
SpeI

- Transcriptional fusions
- Expression systems


3) Cargo site:

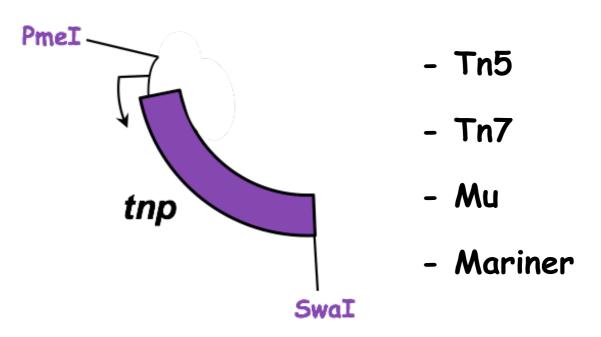
pSEVA collection

pSEVA modules exchange examples

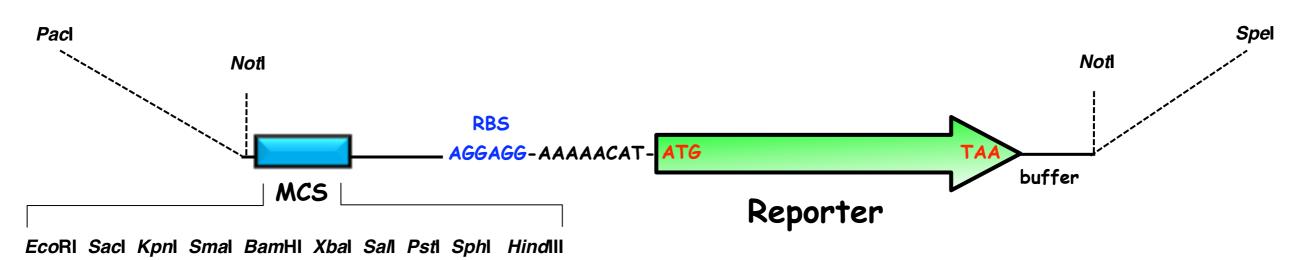

TetR-P_{tet}, Km^R, R6K


Uses:

- To integrate cargos into the genome
- Random mutagenesis

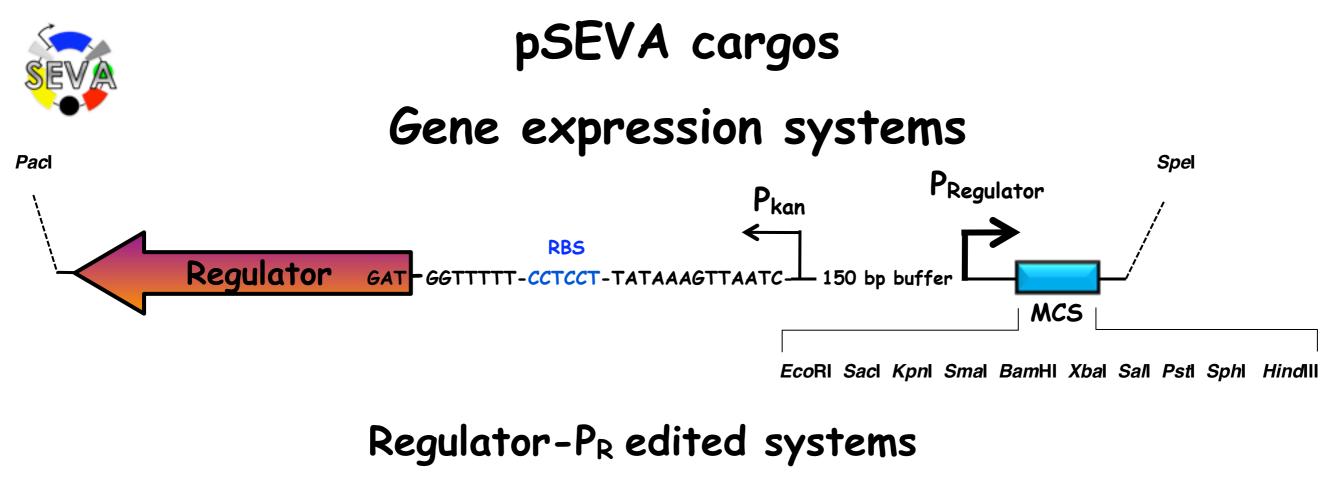


pSETA


The transposase module

pSEVA cargos

Promoter quantification systems


Sequence-edited reporters

<u>Advantages</u>

- GFP: gfp with F64L & S65T mutations (717 bp)
- LacZ: *lacZ* (3075 bp)
- Lux: *luxCDABE* (5798 bp)

Same plasmid backbone Copy number at choice Different reporters

Promoter / reporter calibration curves

<u>Promoter</u>	<u>Regulator</u>	Type	Inductor
Ptet	TetR	Repressor	Anhydrotetracycline
Ptac	LacIq	Repressor	IPTG
Pm	XyIS	Activator	Benzoate
Pu	XylR	Activator	Xylene
PalkB	AlkS	Activator	Alkanes
Psal	NahR	Repressor	Salicylate

Towards a consensus language for synthetic biology			
Synthetic edited DNA segments for pSEVA vectors			
DNA piece	Function		
Tellurite resistance	Non-antibiotic marker		
AlkS	Expression system based on alkanoates		
Conditional oriV pBR322 TetR	Conditional expression based on Tc		
LacZ	Promoter reporter with optimized RBS		
LacZ α -pUC18	For cargo cloning		
TAP/I-SceI	System for TAP tag induction in chromosomal genes		
NBP-TNT	Two component sensor (TNT)		
TetR-P _{tet} -GFP	GFP expression based on Tc		

Towards a consensus language for synthetic biology Meetings

Microfluidics as analytical tool for SB measurements Nicolas Szita (28th-29th May 2009)

Topics:

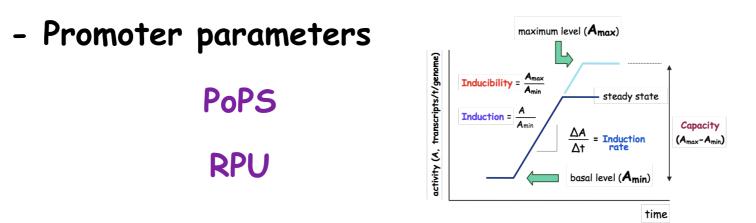
Invasive analytical techniques for SB measurement & quantification

Non-Invasive analytical techniques for SB measurement & quantification

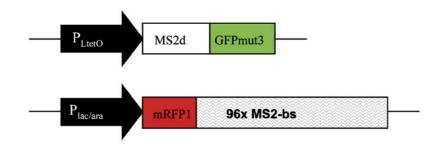
Microfluidics for high throughput analytics in SB

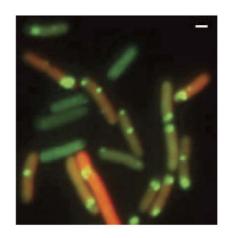
Towards a consensus language for synthetic biology Meetings

Sandpit on defining transcriptional standards Victor de Lorenzo (21th-22th October 2009)


Aim: Position paper to define transcriptional measurements standards

	Participants	
Engineer	Biology	European Comission
Drew Endy	Steve Busby	Ioannis Economidis
Ron Weiss	Richard Gourse	
Christina Smolke	Fernando de la Cruz	<u>Observers</u>
Ido Golding	Martin Buck	Alistair Elfick
Sven Panke	Virgil Rhodius	Rafael Silva Rocha
Vitor dos Santos	Victor de Lorenzo	Esteban Martínez


Sandpit on defining transcriptional standards


Topics covered:

- How to measure promoter strength
- Standard way to perform reporter fusions
- Reporter calibration curves
- Standard reference promoters

- Indirect vs. Direct measurements*

*: Golding et al. Cell. 2005

Position paper to define transcriptional measurements standards

Towards a consensus language for synthetic biology Deliverables WP4:

4.1: Database on quantitative promoter performance

Not an adequate format yet!

Review paper project that deals with transcription/reporter systems

4.2: Application of design tools on standardized promoters
Develop standard plasmid collection (pSEVA & pSETA)
Develop standard promoter quantification plasmids
Develop multiple Regulator-Promoter expression systems
Position paper to define standard measurement procedures

EMERGENCE Meeting; Zürich November 2009

Workpackage 5: Building the Academia-Industry interface

Frank Notka, Ralf Wagner, 13. November 2009

Overview - ACTIVITIES

Workshops/Conference Sessions

- Emergence IP (June 2008)
- Emergence Industry (June 2008)
- SB4.0/ Industrial Biotechnology, Hong Kong (October 2008)
- SATW/acatech, Basel (January 2009)
- DFG Workshop "Synthetic Biology", Berlin (German Ethic Board) (February 2009)
- Applied industrial Synthetic Biology in Europe, Freiburg (April 2009)
- OECD Workshop, Washington (July 2009)
- DECHEMA/acatech Synthetic Bio(techno)logy, Frankfurt (November 2009)

Industry networks

- DECHEMA Working group Systems Biology and Synthetic Biology (Since February 2009)
- SBIA (Synthetic Biology Industry Association) (est. April 2009)
- BioM-WB competence cluster White Biotechnology (Since April 2009)
- IGSC (International Gene Synthesis Consortium) (November 2009)

Workpackage 5: Industry Involvement Priorities:

SynBio in Europe is in a developmental status

Confirmed by industry appearance or better non-appearance of companies at International SB sessions regarding industrial applications

- SB4.0/ "Industrial Biotechnology" (October 2008)
- "Applied industrial Synthetic Biology in Europe" conference (April 2009)
- DECHEMA/acatech "Synthetic Bio(techno)logy" (November 2009)

Highest activity involving companies is found in the field of regulating screening processes to avoid misuse of synthetic genes

- harmonize processes
- in accordance with US government guidelines (to be released in December)

Workpackage 5: Industry Involvement Public debate and perception:

EDITORIALS

NATURE Vol 455 25 September 2008

Pathways to security

Self-regulation is a good first step — but syntheticbiology companies still need independent oversight.

Regulators have been slow to deal with 'dual use' biological agents such as proteins, DNA or whole organisms that are generally used for benign research, but that could also be used to inflict harm. The reasons are many — not least being the complex way in which these substances behave and interact with their environment — and the result has been a regulatory patchwork.

For example, many countries have tried to regulate the firms that produce made-to-order DNA sequences by requiring permits for export. But the paperwork required is so onerous that the companies often just discard their non-domestic orders — so information about the customers looking to acquire these sequences is lost. And oversight of domestic sales is comparatively lax.

This month, the Industry Association Synthetic Biology (IASB), a in coopera consortium of gene-synthesis companies located mainly in Europe, the unreg agreed to a series of actions that might provide a more robust solueconomic tion to the bioterror problem. Several of the US companies in the but the me market have reportedly indicated their willingness to comply. The But that agreement calls for member companies to develop a database of indicated suspicious or potentially dangerous DNA sequences. The associa-When ba tion did note the potential danger of centralizing these data, even regulators though they are already publicly available. But the benefit, argues first steps the IASB, is that an open-source collection will be much easier for can build

432

© 2008 Macmillan Publishers Limited. All

Meanwhile, the agreement calls on IASB member companies to share information about the screening processes already in use so that standard practices can be adopted. The firms have said they are willing to cooperate on this effort in a non-competitive way; the report they produced includes ideas for better policing, including a pattern-recognition approach that would be more adaptable to what most predict will be a rise in the number and variety of DNA sequences requested.

experts to keep updated, complete and correct.

These steps, and other proposed elements, are the best proposed elements are the best propose

Published online 31 August 2009 | Nature | doi:10.1038/461022a

News

Keeping genes out of terrorists' hands

Gene-synthesis industry at odds over how to screen DNA orders.

naturenews

Published online 4 November 2009 | Nature | doi:10.1038/news.2009.1065

News

Gene-makers put forward security standards

www.geneart.com

Workpackage 5: Industry Involvement

History of screening standard:

Initiative(s) by IASB (International Association Synthetic Biology):

- WS and Report on Biosecurity and Biosafety (September 2008)
- 2nd Workshop on Synthetic Biology (4. November 2009)
 - Code-of-conduct finalization
 - Introduction to ViREP (virolence factor repository data base)

Initiatives by GENEART/IGSC (International Gene Synthesis Consortium):

- Bringing the five leading gene synthesis companies (> 80% commercial GS) together to work on solutions for sequence and customer screening (Geneart, DNA2.0, Genscript, Blue Heron, IDT) → press release next week
- Drafting of a best practice protocol for screening \rightarrow to be published soon
- Assemble a data bank of sequences → combining sequences of concern from all member companies → basis for a public data base with access for all screening companies
- Concerted respond to the guidelines for screening released from the US government

Workpackage 5: Deliverables

Deliverable		Month
5.1	 Reports on two industry workshops to define the priorities of the European industry in the field of synthetic biology, and to evaluate the fit of the European synthetic biology projects with the industry needs 	06/07 & 06/08
5.2	Reports on two workshops (associated to industry-relevant scientific conferences) to teach the industry in synthetic biology concepts and tools	12/07 & 12/08
5.3	Position paper on the priorities of the European industry in the field of synthetic biology, evaluation of fit with current EU synthetic biology projects, and decision on how to address the potential gaps	12/08
5.4	Intermediate and final report on status of discussion regarding IP strategy in the field of synthetic biology, originating from company internal assessments and summarizing the ideas on IP-management (same workshops as in D5.1)	12/07 & 12/09

Part 1 : to define the priorities of the European industry in the field of synthetic biology

"Define needs and interests of Industry" EMERGENCE WS (25.06.2008)

 \rightarrow Report delivered

Part 2: to evaluate the fit of the European synthetic biology projects with the industry needs

 \rightarrow No report delivered, but activities in different networks started...

Workpackage 5

Industry/Academic Networks

DECHEMA: Gesellschaft für Chemische Technik und Biotechnologie

The major objective is to support and to guide R&D in technical Chemistry and biotechnology.

 \rightarrow Activities within the Working group Systems Biology and Synthetic Biology

SBIA: Synthetic Biology International Association

Newly founded Industry association with the main focus on education & collaborations and also on social / political regulation

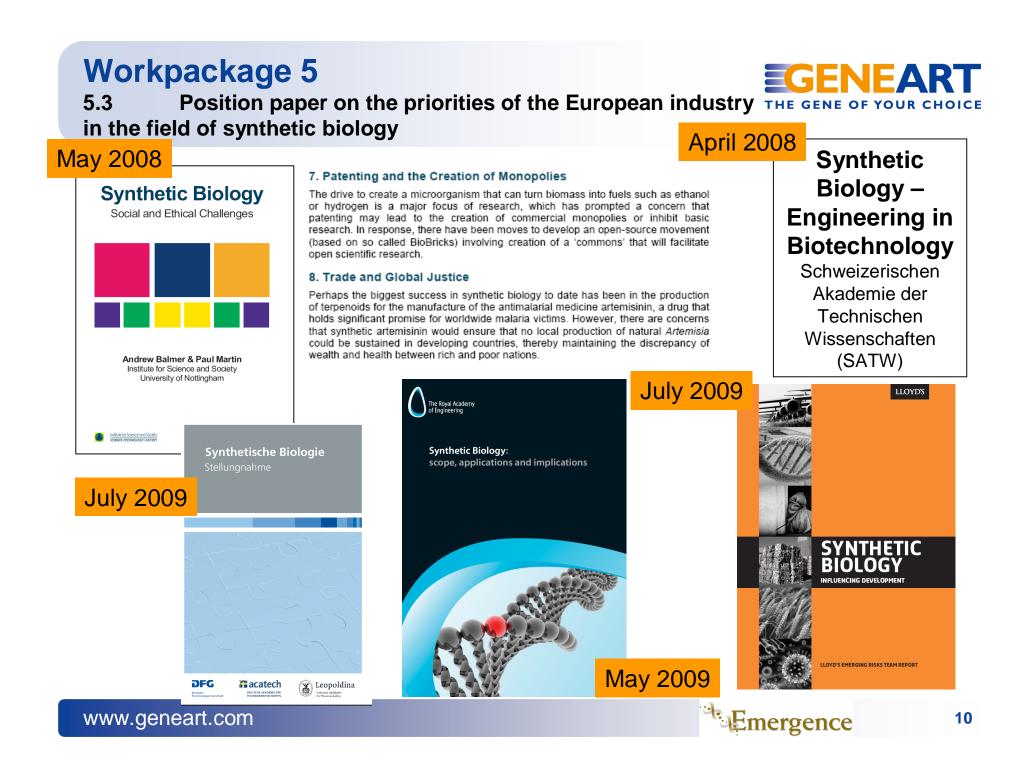
 \rightarrow GENEART is a board member as the European representative

BioM-WB: competence cluster White Biotechnology, Bavaria

Funded cluster for promoting collaboration between Industry and Academia

Workpackage 55.2Reports on two workshops (associated to industry-
relevant scientific conferences)

Example - SB4.0: Industrial Biotechnology (Chair: Ralf Wagner, Geneart)
 Example - Synthetic Bio(techno)logy (Co-organization: R. Wagner, S. Panke)
 Example - Applied industrial Synthetic Biology in Europe conference


Problem: nearly without Industry presence!

The main Industry (showing presence) is the Gene synthesis industry and some international associations (IASB, SBIA)

Workshops to teach the European Industry in Synthetic Biology concepts and tools are difficult to realize in the context of an industry-relevant scientific conference (due to a lack of suitable conferences)

A significant amount of reports dealing with these issues is already available...

Workpackage 5 5.4 Intermediate and final report on status of discussion regarding IP strategy in the field of synthetic biology

"IP issues" EMERGENCE WS (16.06.2008)

→ Report delivered

"Opportunities and Challenges in the Emerging Field of Synthetic Biology" OECD, US National Academies National Academies and Royal Society Washington, DC (July 9th 2009)

Richard A. Johnson, Senior Counsel and Senior Partner (Ret.), Arnold & Porter LLP and CEO, Global Helix LLC

→ Transcript available at: <u>http://sites.nationalacademies.org/PGA/stl/PGA_050738</u>

Experts are providing strategic scenarios but persons concerned (potential users) do not really participate or comment on the proposed strategies

 \rightarrow Practical strategies can be developed only in a real setting

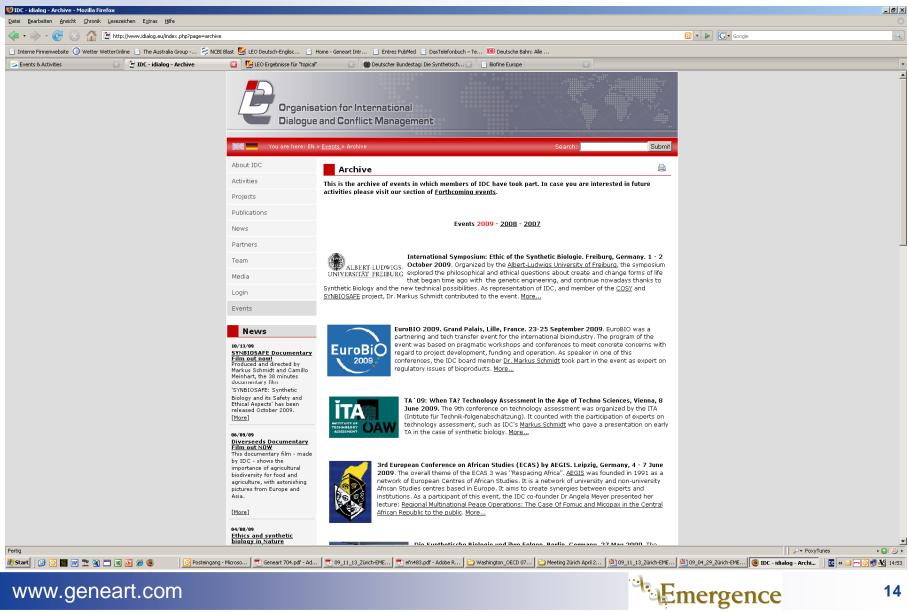
Adjustment of original proposal

- IP regulation turned out to be NOT the critical issue for the acceptance of Synthetic Biology at the moment
- Instead an urged need and some public pressure tightened for *BioSecurity regulation*
- Neglect of this problem will harm the complete development of Synthetic Biology especially the Industry involvement
- This problem has to be addressed by the responsible Industry player
- Highest attention has been paid to the development of international screening standards (code of conduct) and the harmonization of a screening data base (Regulated Pathogen Database) for all gene synthesis companies (press coverage starting next week)

Conclusion: some of the original objectives have gained less attention in favor of the Biosecurity topic

5.1 Second report to evaluate the fit of the European synthetic biology projects with the industry needs \rightarrow refer to reports/PR on Biosecurity (IGSC, to be released next week), Reports on German Ethikrat regarding SynBio

5.2 Two reports on workshops associated to industry-relevant scientific conferences → refer to public reports or draft short reports on SB4.0 and Synthetic Bio(techno)logie


5.3 Position paper on the priorities of the European industry in the field of synthetic biology

→ refer to other reports e.g. Sven's SATW-report or position report of acatech – DFG – Leopoldina Workshop/Ethikrat Deutscher Bundesrat

5.4 Final report on status of discussion regarding IP strategy →delayed?

Short reports of activities on the web page!? EGENEART THE GENE OF YOUR CHOICE

www.geneart.com

Summary

Activities:

The expansion of Academic/Industry networks have been actively supported on regional (BioM-WB), national (DECHEMA) and international (SBIA) levels

The management of Synthetic Biology conferences / workshops has been organized or supported

The international regulation of Biosecurity measures has been promoted to a broad level of acceptance and commitment by the global GS companies

Massages:

In Europe the Industry perceived as involved in Synthetic Biology is nearly exclusively restricted to gene synthesis companies and associated service provider

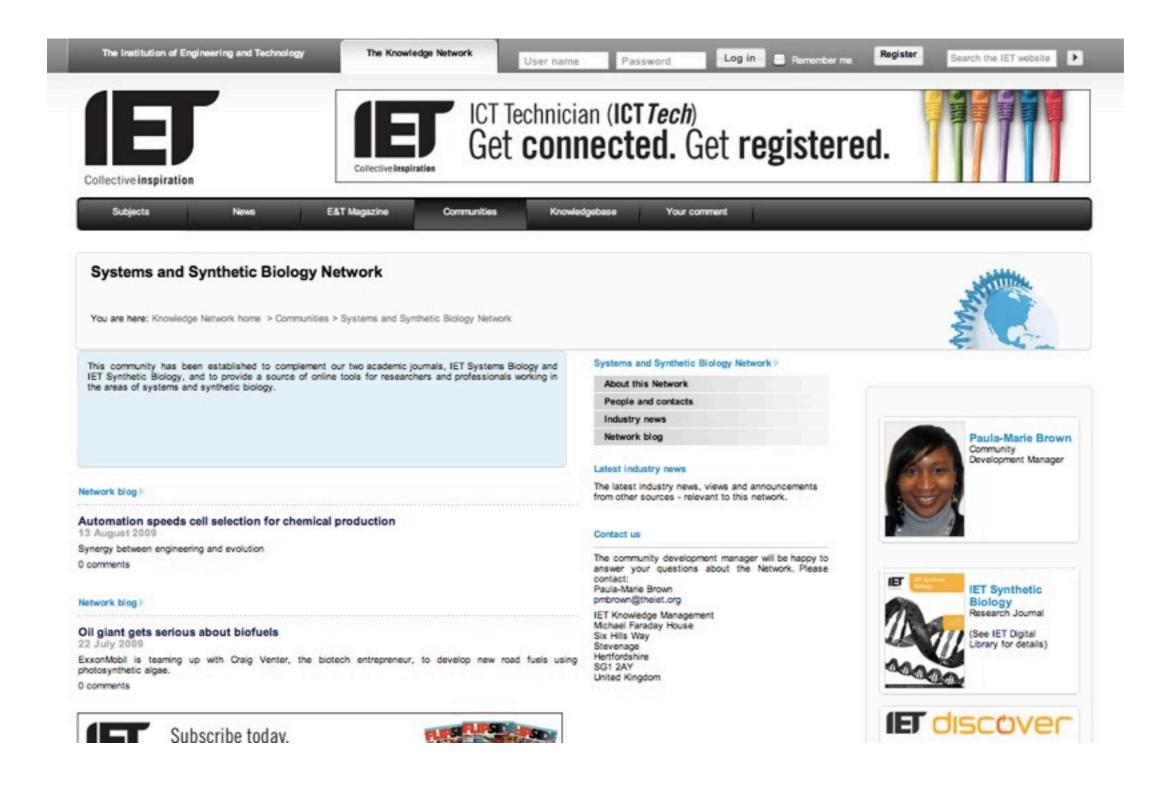
IP regulation is a highly topical issue. However, attempts to provide legal solutions for handling the SB-related IP-practice may not be successful unless practical experience is available to drive the process

At the moment, the development of regulation processes for the secure use of synthetic DNA has the highest priority

Workpackage 2 ^s University of Cambridge

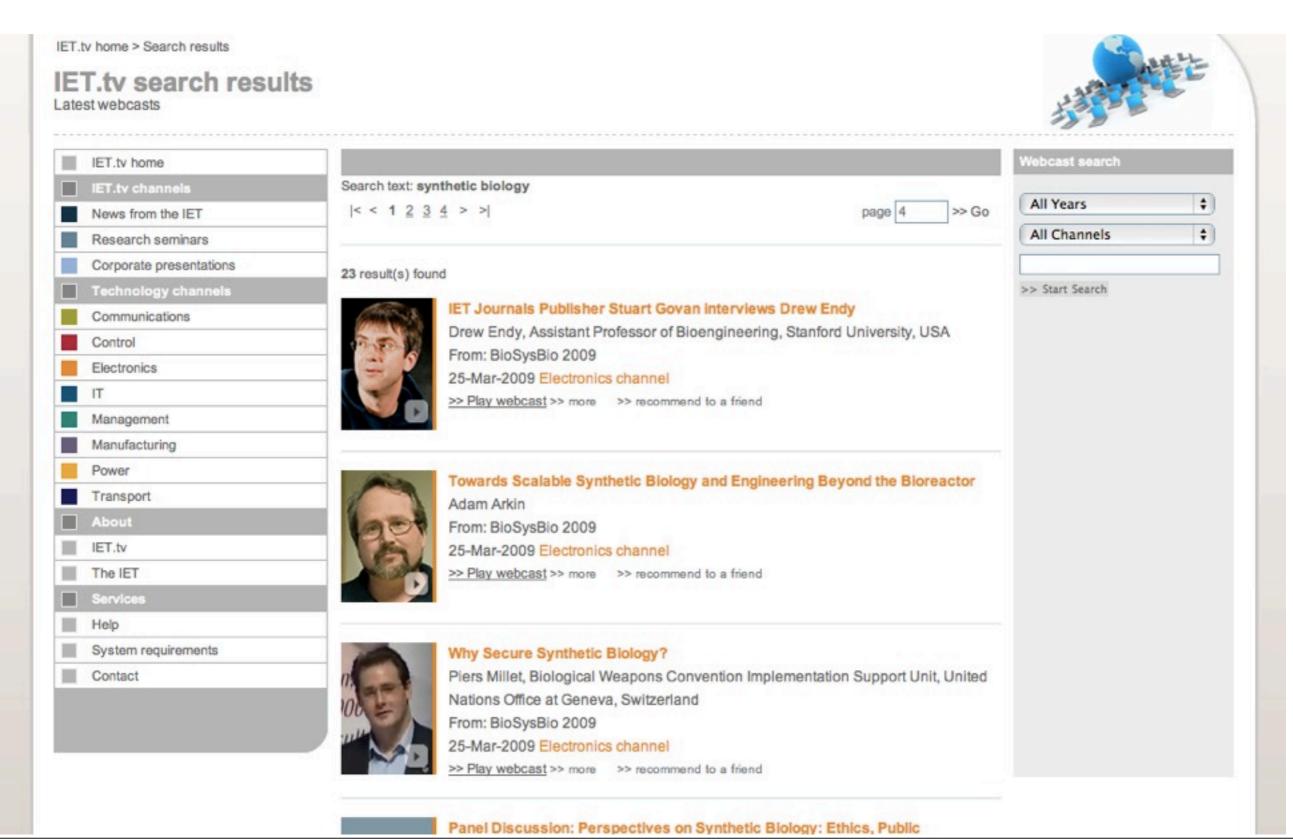
Deliverable 2.5 Educational resource at IET available and continuously available

d

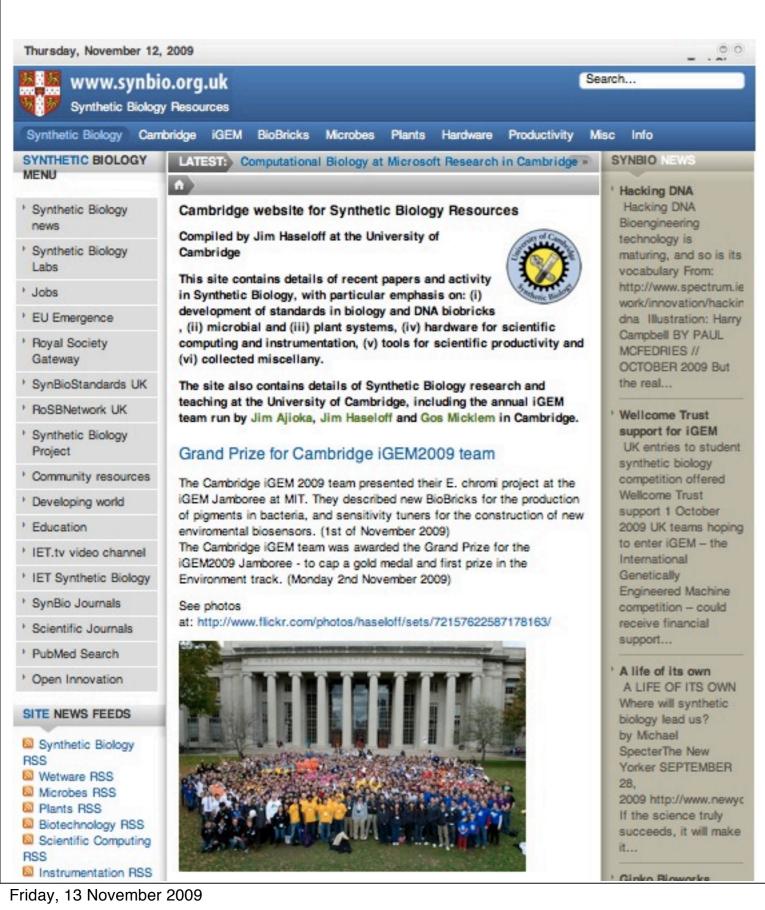

Workpackage 2: Attracting talent to synthetic biology in Europe Sven Panke

Deliverable 2.1:	Reports documenting the synthetic biology summer course, including syllabus	8? 20, 32	July 2009	ETH
Deliverable 2.2:	Report on the possibilities and feasibility of implementing a European Master in Synthetic Biology – if considered feasible, then	9	August 2007	EP
Deliverable 2.3:	Report on state of planning affairs at schools intending to participate in the Master	24	December 2008	EP
Deliverable 2.4:	Master studies implemented at the leading and the collaborating schools	34	October 2009	EP
Deliverable 2.5:	Educational resource at IET available and continuously updated.	12	December 2007	UCAM

В


http://www.theiet.org/synbio

With the Institute of Engineering and Technology, we have established a web-based Technical and Professional Network for communication and distribution of information and educational material. This web based resource is hosted by the IET and associated with the IET Synthetic Biology journal.

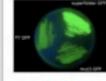

http://www.iet.tv

The IET web resource includes a video server at <u>http://www.iet.tv</u>, which provides dual screen, streaming video presentations covering Synthetic Biology.



http://www.synbio.org.uk

In addition, we have established a complementary web resource for Synthetic Biology at UCAM. This is a dynamic Web 2.0 site with online access to news articles and links to people and events in the field of Synthetic Biology.



Synthetic operon for violacein production

The Cambridge iGEM2009 team received sponsorship from DNA2.0 Inc., which allowed them to design and construct a synthetic operon for the biosynthesis of violacein. The operon is 7.5Kb in size, contains 5 genes, and has been submitted to the MIT Registry for Standard Parts in BioBrick format - Part BBa_K274002. Expression of the VioA-E genes results in conversion of L-Tyrosine to an intense violet pigment. Violacein is a hydrophobic compound, and is retained within cells.

New BioBrick encoding an improved fluorescent protein

Green Fluorescent Protein (GFP) offers efficient and convenient means of visualising the dynamic process of gene expression and of obtaining readout of the current state of complex gene regulatory networks - features of major interest for synthetic biology.

Stefan Milde, working in the Haseloff Lab at Cambridge as part of iGEM2008 has constructed BioBrick versions of improved GFP variants and tested their properties (Parts:BBa I746908-I746919). He has compared two recently reported GFP variants to the mut3GFP variant in the Registry of Standard Biological Parts. The two GFP variants chosen were "superfolder GFP", developed and described by Pédelacq et al (2006), which was engineered for improved fluorescence in fusion proteins and P7 GFP ("superfast GFP") which was engineered by Fisher et al (2008) and selected on the basis of its very rapid folding in vitro. Read on for more...

The Registry of Standard Parts at MIT

With BioBrick parts from Cambridge iGEM teams: iGEM2005, iGEM2006, iGEM2007, iGEM2008 and the Haseloff Lab and new Bacillus subtilis strains and key parts

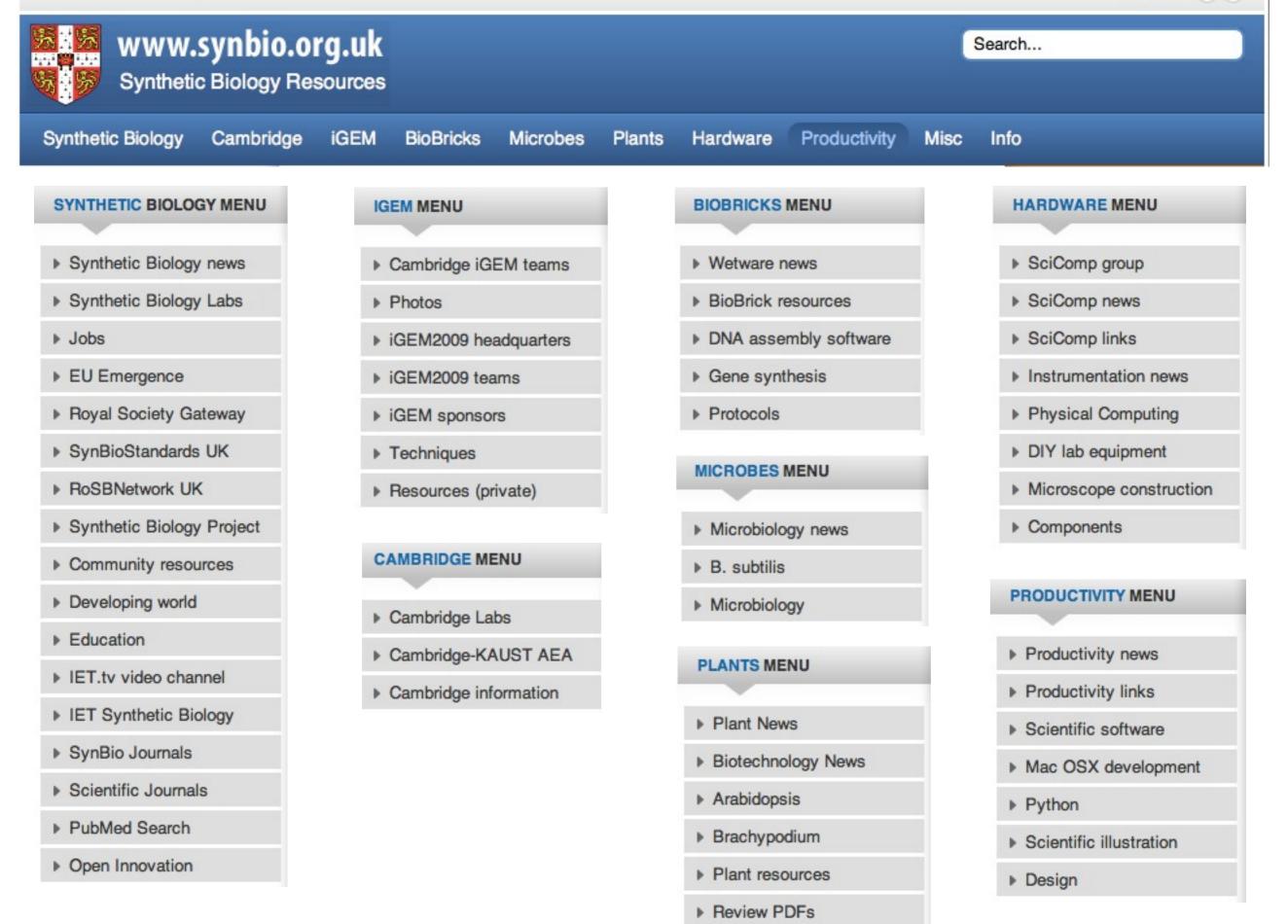
(http://partsregistry.org/)

multiprotein complex production. Bieniossek C, Nie Y, Frey D, Olieric N, Schaffitzel C, Collinson I, Romier C, Berger P, Richmond TJ, Steinmetz MO,Berger...

Resecting a doublestrand break

At loose ends: resecting a doublestrand break. Cell. 2009 May 29;137(5):807-10. Bernstein KA, Rothstein R. Columbia University Medical Center, Department of Genetics & Development, New York, NY 10032, USA. Double-strand...

Production of difficult-to-express inducer-dependent bacterial repressor


proteins

A general strategy for the production of difficult-to-express inducer-dependent bacterial repressor proteins in Escherichia coli. Ohristen EH, Karlsson M, Kämpf MM, Weber CC, Fussenegger M, Weber W. Protein...

Protein sequencing gone awry Protein sequencing gone awry: 1 sample, 27 labs, 20 results One of the more

recent fields to pick

up an -omics

SYNTHETIC BIOLOGY	LATEST: Cambridge iGEM2009 team *	
MENU	Synthetic Biology EU Emergence	
 Synthetic Biology news 	PARTICIPANTS IN EU EMERGENCE PROGRAMME	
Synthetic Biology	Search on directory (Title and intro \$) (Ordering by	
Jobs	Results 1 - 11 of 11	
EU Emergence	1. Alfonso Jaramillo Lab	
Poyal Society Gateway	http://www.enseignement.polytechnique.fr/profs/biochir We are developing a research plan in Synthetic Biology foundations for this new engineering discipline. We will	
SynBioStandards UK	focusing in concrete engineering projects, involving ea	
PossNetwork UK	I 304 hits	
Synthetic Biology Project	2. Alfonso Valencia Lab http://www.cnio.es/ing/grupos/plantillas/curriculum.asp	
Community resources	pag=1002	
Developing world	The main interest of our group is understanding the organisation and evolution of gene/protein networks,	
Education	and in particular the relation between protein/gene	
IET.tv video channel	specific interactions with cancer related processes. I 316 hits	
IET Synthetic Biology	3. Jim Ajioka Lab	
SynBio Journals	http://www.path.cam.ac.uk/pages/ajioka/	
Scientific Journals	Microbial and protozoan biology Jim Ajioka's lab studies genetic circuits and genomics in Bacillus	
PubMed Search	subtilis and Toxoplasma.	
Open Innovation		
SITE NEWS FEEDS	4. Jim Haseloff Lab http://www.plantsci.cam.ac.uk/Haseloff/Home.html Engineering plant form. This site for Jim Haseloff's	
Synthetic Biology	laboratory at the University of Cambridge describes the growing set of methods for visualising and	
RSS 웹 Wetware RSS 웹 Microbes RSS 웹 Plants RSS	manipulating cell fates in intact plant tissues. We are using these as tools for reprogramming I 315 hits	
Biotechnology RSS Scientific Computing RSS Instrumentation RSS Productivity RSS	5. Jorg Stelling Lab http://www.csb.ethz.ch/about/index Computational Methods for Studying Complex Networks The group develops computational methods for studying complex networks that establish cellular	

Emergence: A Foundation for Synthetic Biology in Europe

Eme

Synthetic biology has emerged as a very recent but highly promising approach to reorganizing the scientific biological endeavor by integrating central elements of engineering design. By applying the tool box

of engineering disciplines such as electrical, mechanical, or chemical engineering and computer sciences, including the vigorous application of modeling techniques and organizing the development of novel biological systems along a hierarchical systems architecture with defined and standardized interfaces, synthetic biology aims at no less than revolutionizing the way we do bioengineering today. If successful, synthetic biology will transform bioengineering into a highly successful and sustainable life science industry.

The objective of this coordination action (CA) EMERGENCE is to provide a communication and working platform for the emerging European synthetic biology community in order to strengthen the organizational and conceptual basis of the synthetic biology as a true engineering discipline in biological engineering.

click to see Partner Labs

dna Illustration: Harry Campbell BY PAUL MCFEDRIES // OCTOBER 2009 But the real...

Wellcome Trust support for iGEM UK entries to student synthetic biology competition offered Wellcome Trust support 1 October 2009 UK teams hoping to enter iGEM - the International Genetically Engineered Machine competition - could receive financial support...

A life of its own A LIFE OF ITS OWN. Where will synthetic biology lead us? by Michael SpecterThe New Yorker SEPTEMBER 28, 2009 http://www.newyc If the science truly succeeds, it will make it...

Ginko Bioworks From: Technology

www.synbio.org.uk

website traffic	last month	last year
visits	36,018	220,662
pages	475,929	2,923,708

Friday, 13 November 2009

Thursday, November 12, 2009

www.synbio.org.uk

Synthetic Biology Resources

Synthetic Biology outreach & research initiatives

- BioSysBio Conference hosted in Cambridge (April 2009)
 Satellite meeting on Standards for Synthetic Biology
 JH raised funding from Microsoft Research and SynBioStandards for
 Standards Workshop, with invited speakers: Adam Arkin, Berkeley; Herbert
 Sauro, Seattle; Guy Cochrane, Sanger Institute.
- iGEM2009
 All European finalists: Cambridge, Heidelberg, Freiberg, Imperial, Valencia, Groningen
- iGEM2009
 Collaboration between Cambridge iGEM team and Royal College of Arts
- Wellcome Trust: ~ 50 studentships secured for iGEM2010 in UK
- **European Association for Science Events (EUSCEA)** funded Synthetic Biology 2WAYS Project. Public demonstration of Synthetic Biology principles and Youth Parliament: Jim Haseloff, Nicola Buckley (UCAM) & Christophe Godin, Laurent Laplaze (Montpellier)

• New training materials for Synthetic Biology

Seed money for collaboration with Dean Madden, National Centre for Biotechnology Education, University of Reading. Follow on from EU Volvox project

Teaching Resources for Synthetic Biology

Timetable for 2009

Course Assessment

Team Building Exercise

Lecture resources

- 1. Introduction to Synthetic Biology (Jim Ajioka)
- 2. Bacterial gene expression (John Archer)
- 3. <u>Reporter gene</u>s (Jim Haseloff)
- 4. Experimental Design (Gos Micklem)
- 5. Rhodococcus (John Archer)
- 6. Sequencing and Synthesis (Gos Micklem)
- 7. <u>Microbial Diversity</u> (Keith Johnstone)
- 8. Mol Biol for Syn Biol (Tom Ellis)
- 9. Synthetic Parts, Genes & Circuits (Jim Ajioka and Jim Haseloff)
- 10. <u>Stochasticity: Noise in Biological Systems</u> (Lorenz Wernisch)
- 11. Biological Modelling & SBML (Nicolas Le Novere)
- 12. Modelling for Synthetic Biology (Andrew Phillips)
- 13. Quorum Sensing (Rita Monson)
- 14. Bacterial Mobility (Gillian Fraser)
- 15. Synthetic Bacterial Communication (James Brown)
- 16. Microfluidics and microdroplets (Wolfgang Bauer)
- 17. Chemotaxis (Dennis Bray)
- 18. Morphogenetic bacteria (Jim Haseloff)
- 19. <u>Gram positive bacteria</u> (Jim Ajioka)
- 20. <u>Synthetic Logic</u> (Gos Micklem)
- 21. Anhydrobiosis (AlanTunnacliffe)
- 22. Application of Synthetic Biology in plant systems (Jim Haseloff)
- 23. Biomedical applications of Synthetic Biology (Gos Micklem)

<u>Microbiology 101</u>: resources for microbiology assembled by Duncan Rowe Molecular Biology 101: resources for molecular Biology assembled by Duncan Rowe

Lab practicals:

- 1. Scent production (Eau d'Coli)
- 2. Quantifiying gene expression
- 3. <u>Repressilator</u>
- 4. <u>Noise</u>
- 5. Open source hardware: Arduino lab
- 6. <u>Swarming</u>
- 7. Bandpass detector circuit
- 8. Photosensitive Biofilm
- 9. DNA problem solving exercise

Project Reviews & Mini-Talks

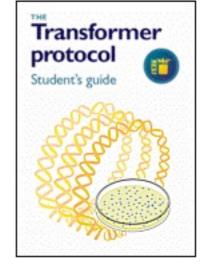
Description

Student teams

Presentations

Dragon's Den

- 1. Entrepreneurship: a scientist's viewpoint (Alan Tunnacliffe)
- 2. Entrepreneuship: the University and venture capital (Maher Khaled)
- 3. Team pitches


Software resources

Documentation; resources & style guide

<u>eBooks</u>

Student participants (contact details)

Logistics

Synthetic Biology consultations (UCAM)

- Royal Society: Synthetic Biology Policy Coordination Group
- Royal Academy of Engineering: Report on Synthetic Biology
- OECD, Royal Society & National Academy of Science USA: Bellagio conference
- BBSRC EPSRC ESRC: Network for Standards in Synthetic Biology
- Wellcome Trust: Synthetic Biology Planning Group.
- Woodrow Wilson Institute: advisor to Synthetic Biology Project
- Cambridge-KAUST Academic Exchange Alliance: establishment of Synthetic Biology curriculum

EPSRC-NSF "Sandpit" on Synthetic Biology 2009

Cyberplasm: An autonomous micro-robot constructed using synthetic biology

Joseph Ayers (Northeastern), Daniel Frankel (Newcastle), Vladimir Parpura (UAB), Christopher Voigt (UCSF)

Programmable Rhizosphere

Kaustubh Bhalerao (UIUC), Hana El Samad (UCSF), Jim Haseloff (Cambridge), Christina Smolke (Stanford), Christopher Voigt (UCSF), Neil Wipat (Newcastle)

Engineering Genetically Augmented Polymers

Andy Ellington (UT Austin), Paula Booth (Bristol), Rachel O'Reilly (Warwick), Michael Jewett (Northwestern)

Synthetic Aesthetics: Connecting Synthetic Biology and Creative Design

Drew Endy (Stanford), Jane Calvert (Edinburgh), Alistair Elfick (Edinburgh)

Synthetic Integrons for Continuous Directed Evolution of Complex Genetic Ensembles

Joshua Leonard (Northwestern), Jay Keasling (UC Berkeley), Susan Rosser (Glasgow), Paul Freemont (UCL), Anne Osbourn (John Innes Centre), Declan Bates (Leicester)

US\$12M total

NSF and EPSRC coordinating oversight, and developing plans to strengthen collaborations, build network. UK to host PI meeting in spring 2011