

Project no. 043338

Project acronym: EMERGENCE

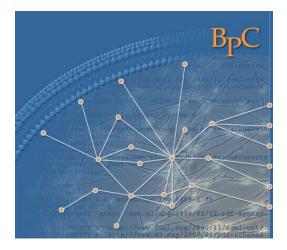
Project title: A foundation for Synthetic Biology in Europe

Instrument: NEST Pathfinder

Thematic Priority: Synthetic Biology

D1.3: Report on the first workshop for design tools for synthetic Biology

Due date of deliverable: March 2007 Actual submission date: December 2007


Start date of project: 1.12.2006

Duration: 36 months

Vitor Martins dos Santos

Systems and Synthetic Biology Group, Helmholtz Center for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)			
Dissemination Level			
PU	Public	Х	
PP	Restricted to other programme participants (including the Commission Services)		
RE	Restricted to a group specified by the consortium (including the Commission Services)		
СО	Confidential, only for members of the consortium (including the Commission Services)		

The Eighth Annual BioPathways Meeting

Organized by

VÍtor Martins dos Santos Vincent Schachter Vincent Danos Joanne Luciano Aviv Regev Eric Neumann

July 19-20, 2007, ISMB-ECCB 2007, Vienna, Austria

The 8th BioPathways meeting was organized by the BioPathways Consortium (www.biopathways.org), an open forum aimed at fostering computational approaches to the modeling, reconstruction, analysis and simulation of biological networks.

Previous BioPathways meeting have focused on a variety of themes, such as computational reconstruction of molecular networks, pathway evolution, integration of models and experiments, models and ontologies for pathways, metabolic pathways on modeling of interactions and regulation on a systems scale.

The special focus this year was on computational design methods for Synthetic Biology and was organised in collaboration with EMERGENCE, an EU-funded consortium aiming at fostering and consolidating the field of Synthetic Biology in Europe (www.emergence.ethz.ch/).

Synthetic Biology addresses the design and fabrication of biological components and systems that do not exist in the natural world as well as the re-design and fabrication of already existing biological systems. Whereas many of the computational methods developed in order to model and analyze natural systems are relevant to the modeling of synthetic living systems, there is also an acute need for new computational methods in order to support the rational design goals and the abstraction/modularity/assembly approach of synthetic biology.

The meeting included as well 3 other plenary sessions, touching on the full spectrum of pathways and networks-related themes and with relevance to Synthetic Biology design tools:

- Network Reconstruction and Analysis
- Database and Software Tools (for pathways and networks)
- Evolution of networks

Each plenary session included several long invited presentations (30'). An open discussion will conclude each day.

The program was as follows:

8th BioPathways Meeting Program

Hall F1, Austria Vienna Center

Day I – July 19th

7:30 – 8:45	Registration			
9:00- 9:10	Vincent Schachter Genoscope, Evry & BioPathways Consortium	Opening remarks		
	n 1: Computational Methods and Infr an: Vítor Martins dos Santos	astructure for Synthetic Biology		
9:10- 09:30	Vitor Martins dos Santos, Helmholtz Center for Infection Research, Braunschweig	EMERGENCE: a Foundation for Synthetic Biology in Europe		
9:30- 10:00	Alfonso Valencia, CNIO, Madrid	Bioinformatics tools to help in the design of biological systems		
10:00- 10:30	Jörg Stelling, ETH, Zürich	Formal tools for Model-Based Synthetic Biology		
10:30- 11:00	Coffee Break			
11:00- 11:30	Randy Rettberg, MIT, Cambridge	The MIT registry of parts and devices		
11:30- 12:00	Alfonso Jaramillo, Ecole Polytechnique, Paris	Model-based design of genetic circuitry		
12:00- 13:00	Lunch			
	n 2: Network Reconstruction & Analy an: Vincent Schachter	ysis (part 1)		
13:00- 13:45	Eric Neumann, Teranode Corp.	A Genome - Phenome Integrated Approach for Mining Disease- Causal Genes using Semantic Web		
13:45- 14:30	Jason Ernst, Carnegie Mellon University	Reconstructing Dynamic Regulatory Maps		

14:30- 14:50	Tijana Milenkovic and Natasa Przulj, Irvine, University of California	Uncovering Biological Network Function via Graphlet Degree Signatures
14:50- 15:10	Kam Dahlquist, Loyola Marymour University	t Mathematical Modeling of the Transcriptional Network Controlling the Environmental Stress Response in Saccharomyces cerevisiae
	an 3: Databases & Software Tools an: Erci Neumann (to be confirmed)	
15:10- 15:30	Ozgun Babur, Bilkent University	PATIKAweb Components for Microarray Data Analysis & Advanced Graph-Theoretic Querying
15:30- 16:00	Coffee Break	
16:00- 16:20	Richard Adams, University of Edinburgh	The Edinburgh Pathway Editor
16:20- 16:40	Esther Schmidt, EBI, Cambridge	Reactome - a knowledgebase of biological pathways
16:40- 17:20	Peter Karp, SRI International	Gene Regulation in EcoCyc and Pathway Tools
Round	Table Discussion	I
17:20- 18:30	IT Infrastructure & Computational Meth	ods for Systems and Synthetic Biology

Day II – July 20th

	n: Peter Karp (to be confirmed)		
9:00-9:4	5 Florence d'Alche-Buc, University of Evry	Supervized Inference of Protein-Protein Interaction Networks	
9:45- 10:30	Eytan Ruppin, Tel-Aviv University	Genome Scale Studies of Robustness and Annotation of the Yeast Metabolic Network	
10:30- 11:00	Coffee Break		
11:00- 11:20	Rainer Koenig, DFKZ, Heidelberg	Using gene expression data and network topology to detect substantial pathways, clusters and switches	
11:20- 11:40	Hanif Khalak	Microarray-based Class Modeling and Prediction using Set- Enrichment Analysis	
11:40- 12:00	Sol Efroni, NIH/NCI	Identification of Key Processes underlying Cancer Phenotypes using Biologic Pathway Analysis	
12:00- 13:00	Lunch		
13:00- 13:45	Jerzy Turyn, University of Warsaw	Identification of functional modules from ancestral protein- protein interactions	
13:45- 14:30	Fengzhu Sun, University of Southern California	Network motif identification in stochastic networks	
	5: Evolution of pathways and netwo n: Toni Gabaldón (to be confirmed)	rks	
14:30- 15:15	Simon Lovell	Protein-protein interactions and their networks: can they tell us about biology?	
15:15- 15:35	Natalia Maltsev	Co-evolutionary analysis of Metabolic Pathways and Enzymes in PUMA2 and Chisel systems	
15:35- 16:00	Coffee Break		
16:00- 16:45	Toni Gabaldón	Evolution of metabolic systems: insights from comparative genomics	

16:45- 17:30	Philip Kim	Relating three-dimensional structures provides evolutionary insights	to protein	networks					
Round Table Discussion									
17:30- 18:30	Network Reconstruction and Evolutio	n							
End of meeting									

Assessment of the results and relevance for the development of novel design tools in Synthetic Biology

The Workshop was organized as a satellite meeting to the Annual Conference on Intelligent Systems in Molecular Biology, the largest world-conference on Bioinformatics. The meeting was attended by about 150 participants, chiefly from a bioinformatics community. The workshop can be considered to have been highly successful. For many of the participants, mainly this was the first time they had contact with Synthetic Biology and the workshop was pivotal in raising awareness and the profile of the field. The discussion profited much form the novel insights and new view points made by the participants not previously exposed to Synthetic Biology.

Many of the tools and methods developed in Systems Biology and Network analysis were considered to be relatively straightforward applicable to SynBio (e.g. genome-scale network analysis for the identification of sensitive intervention points in a regulatory or metabolic network, reverse engineering from high-throughput data, etc.), whereas a number of issues specific to Synthetic Biology were identified.

Indeed, the consistent application of the engineering design paradigm to biological systems is the hallmark of Synthetic Biology. The rational assembly of parts to devices and systems and anticipating and counteracting the impact of their implementation into existing chasses cannot be done without a solid and versatile modelling framework. There is an acute need for an extensive computational infrastructure and new computational methods that specifically support the rational design goals and the abstraction/orthogonality/assembly approach of Synthetic Biology (as opposed, for example, to the currently existing ad hoc systems-oriented computational methods developed to treat and analyze data). This effort must develop in an open-source, usercomputational environment that will facilitate collaborative friendly editina. implementation and iterative revision of Synthetic Biology endeavours (part design, circuit building, synthetic genomes, etc.). To fulfil these needs, research in the following topics is strongly warranted:

a) Computational interchange standards, ontologies and collaborative environment: Synthetic biology will generate a large number of components and devices (functions) and systems that need to be catalogued and characterised (e.g. the Registry of Standard Biological Parts at MIT [http://parts.mit.edu/registry] or Biskit (http://biskit.pasteur.fr/), but also have to be made interoperable and embedded in contexts that enable their use as building blocks in system design. This strongly requires ontologies and appropriated computational resources, model repositories and design frameworks that are currently not available and that should be hence developed.

b) Data mining & integration: Research and tool development are needed for automatic extraction of design-specific information (e.g. from literature and existing biological, chemical and physical databases), and its efficient integration (in a standardised, interoperable way) into the design workflows. These tools demand massive data mining and curation and development of the right query and interface software tools, helped immensely by the implementation of ontologies (see above).

c) Parts design: This includes tools for the (semi-)rational design of parts (such as orthogonal riboswitches and ribosomes, orthogonal sensors, new and orthogonal DNA-protein, protein-protein, and protein-molecule interactions, etc) that complement relevant experimental, directed evolution driven approaches to provide suites of parts with different design parameters and novel functions.

d) Model-based systems design, analysis and optimization: Research is needed on the elements of a comprehensive biological design framework that integrates design tools from the part or minimal function level to the design of complex systems. This involves [i] developing a set of standard modeling objects to describe basic functions of standardized biological parts, [ii] establishing mechanisms for instantiating modeling objects according to the users' selections of parts from the registry, [iii] developing interfaces between registries and repositories and modeling / simulation tools through standardised protocols, and [iv] providing novel methods for computer-assisted circuit design. In particular, the development of design methods will be critical for closing the design cycle. Here, we envisage methods for [i] optimization of circuit layout according to behavioral specifications provided by the user, and [ii] specification of allowable parts characteristics (e.g. binding affinities of TFs) that are consistent with behavioral specifications. These developments should enable, for instance, the potential to combine multiple synthetic operons for construction of complex genetic circuits that can carry out complex synthetic or *in situ* delivery functions.

The discussions and success of the workshop, as well as the recognition of the needs in the development of novel design methods and tools specifically for Synthetic Biology has triggered follow-up initiatives, namely, to the organise a series of this highly successful workshop in the following years and in the scope of the BioPathways initiative (the next meeting will be organised in July 18-19, 2008, in Toronto, again as satelute to the ISMB conference), and a session on Computational Design tool and Modelling at the International Conference on Synthetic Biology, SB4.0, to take place in Hong-Kong in October 2008.