

Project no. 043338

Project acronym: EMERGENCE

Project title: A foundation for Synthetic Biology in Europe

Instrument: NEST Pathfinder

Thematic Priority: Synthetic Biology

Deliverable 2.4: "Master studies implemented at the leading and the collaborating schools"

> Due date of deliverable: Month 34 Actual submission date: Month 34

Start date of project: 1.12.2006

Duration: 36 months

Organisation name of lead contractor for this deliverable: Ecole Polytechnique

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)			
Dissemination Level			
PU	Public	X	
PP	Restricted to other programme participants (including the Commission Services)		
RE	Restricted to a group specified by the consortium (including the Commission Services)		
СО	Confidential, only for members of the consortium (including the Commission Services)		

Deliverable D2.4.: Master studies implemented at the leading and the collaborating schools Responsible : Alfonso Jaramillo (EP & Universite d'Evry Val d'Essonne)

EP has worked towards the establishment of a European master in Systems and Synthetic Biology for the work package 2 "Attracting talent to synthetic Biology in Europe".

EUROPEAN MASTER IN SYSTEMS AND SYNTHETIC BIOLOGY

www.mssb.fr

Aims of mSSB

The vigorous development of Systems and Synthetic Biology constitutes a huge challenge that must be met both from the research and education perspectives. mSSB represents the first step towards nurturing a new brand of researchers and engineers to face up to the challenge.

The aim of mSSB is to provide students from the Life Sciences, Mathematics, Engineering, Chemistry, Physical and Computer Sciences a mean to fruitfully engage in collaborative work across disciplinary boundaries, with applications in Systems and Synthetic Biology. Students undertaking the course will gain hands-on experience in experimental Biology, modeling and designing. They will also enhance transversal capacities including planning a project, giving a seminar, writing and defending a scientific report, interacting with a community, perceiving the industrial, economical and ethical

issues associated with these developing fields.

Added values of mSSB

- A+ appreciation by AERES (French quality assurance evaluation agency)

- The first Master 2 in France teaching Synthetic Biology.
- Partnership with École Centrale Paris, AgroParis Tech, Telecom SudParis

- International panel of world-class research training laboratories, including 7 hosting labs in Europe (Spain, United-Kingdom, Germany, Austria, Danemark)

- Local scientific environment:

- Paris region, the first European R&D concentration;
- Genopole® of Evry, the leading French Biopark, with 20 academic laboratories and 69 biotech companies;
- Excellent research facilities offered on-site (iSSB)

- Limited number of stipends offered to foreign students.

- First row seat in the international Genetically Engineered Machine (iGEM) competition (organized by MIT, USA).

Recruitment

Deadline for application: June 11th 2010. 27 candidates so far (international recruitment), around 12 are expected to be retained.

Program description:

Semester 3 comprises an optional upgrade module, three required modules and three elective modules (Table below) for a total of 30 European credits (ECTS). The three Teaching Units from upgrade module relate to either Biology (for non-biologist students), or Informatics and Mathematics (for biologist students) and they do not give right to European credits. The programme is enriched by a seminar series given by international speakers.

Optional upgrade module:

Module			ECTS
UE0	- Introduction to genomic Biology	34	0
Upgrade	- Introduction to statistical machine learning for inference of	17	-
	biological networksIntroduction to Mathematics applied to Biology	17	

Three required modules:

Module			ECTS
UE1 Foreign language	- Language 1 - Language 2	50	3
UE2 Integrative Biology	 Integrative and spatial view of cellular machinery: from biology to modelling Integrative modelling in Physiology 	40	5
UE8 Synthetic Biology	 E8 - Synthetic Biology for biosynthetic Chemistry Designing, construction and characterization of biological parts and devices Practical work on biological device engineering Modelling and engineering of molecular interaction networks 		7

Three elective modules among five:

Module			ECTS
UE3 Data integration and bio- engineering	 Systems Biology and Bio-engineering Production and interpretation of «-omics» data Practical work on complex systems modelling: from data integration to predictions/falsifications 	40 including practical work	5
UE4 Mathematics applied to Systems Biology	 Statistical analysis of biological sequences and expression data Statistical machine learning for inference of biological networks 	40	5
UE5 Formal languages for modelling and simulation in integrative Biology	 Languages for modelling and simulation of biological systems Formalisms for engineering of biological systems and networks 	40	5
UE6 Dynamic models of biological regulatory networks	 Symbolic approaches for genetic regulatory networks Test applied to biological objects 	40	5

UE7	- Soft Matter for Synthetic Biology	40	5
Molecular modelling and design	 Molecular modelling: interactions and computational engineering of proteins 		

Subject to minor modifications

Seminar series given by international speakers.

The list of speakers, from the academy and from the industry, is established by the students after discussion with some teachers. It is then approved by the mSSB pedagogic team.

Semester 4

A 6-months research training takes place in one of the cutting-edge academic laboratories or biotechnology companies located on site or abroad (Europe, US), for a total of 30 ECTS: 21 ECTS from mid-February to June (before exams); and 9 ECTS in July and August, either by continuing research work in the training lab, or by preparing at Genopole® the **iGEM competition** to take place on the following November.

Module responsibilities:

			Matières (UEc)	Responsable(s)
			Introduction à la Biologie génomique	François Képès
	UEO	Remise à niveau	Introduction à l'apprentissage automatique pour la biologie	Mohamed Elati
			Introduction aux Mathématiques pour la Biologie	Bernard Prum
	1161	Lanques vivantes	Langue vivante 1	
	UEI	Langues vivantes	Langue vivante 2	
Obligatoires	UE2	Biologie	Vue intégrée et spatiale de la machinerie cellulaire : de la biologie vers la modélisation	Sébastien Aubourg
		Intégrative	Modélisation intégrée en Physiologie	Randy Thomas
		Biologie synthétique	Biologie Synthétique pour la Chimie biosynthétique	Jean Weissenbach
	UE8		Conception, construction et caractérisation de parties et de dispositifs biologiques	Alfonso Jaramillo
			Pratique du génie de dispositifs biologiques	Pacale Dupuis Williams
			Modélisation et ingénierie des réseaux d'interactions moléculaires	Jean-Loup Faulon
	UE3	Intégration de données et Bio-ingénierie	Biologie des systèmes, intégration de données	Claude Gaillardin, Ivan Mijakovic, Vicent Fromion
			Bio-ingenierie	Claude Gaillardin, Ivan Mijakovic, Vicent Fromion
	UE4	Mathématiques pour la	Analyse statistique de séquences biologiques et données d'expression	Bernard Prum, Christophe Ambroise
Optionnelles		Biologie Systémique	Apprentissage statistique pour l'inférence de réseaux biologiques	Florance D'Alché-Buc
	UES	UE5 Modèles et langages de simulation pour la Biologie Systémique	Approche langage pour la modélisation et la simulation de systèmes biologiques	Jean-Louis Giavitto
			Formalismes pour l'ingénierie des systèmes et des réseaux biologiques	Franck Delaplace, Hanna Klaudel
	UE6	Modèles dynamiques discrets de réseaux de régulation biologiques	Approches symboliques des réseaux de régulation génétique	Marc Aiquier
			Test appliqué aux objets biologiques	Ana Cavalli
	UE7	UE7 Modélisation et design moléculaire	Matière molle pour la Biologie Synthétique	Philippe Guégan
			Modélisation moléculaire : interactions et ingénierie computationnelle des protéines	Tap Ha-Duong, Nathalie Basdevant